Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug;44(8):1903-1923.
doi: 10.1007/s11064-019-02825-1. Epub 2019 Jun 12.

Increases in miR-124-3p in Microglial Exosomes Confer Neuroprotective Effects by Targeting FIP200-Mediated Neuronal Autophagy Following Traumatic Brain Injury

Affiliations

Increases in miR-124-3p in Microglial Exosomes Confer Neuroprotective Effects by Targeting FIP200-Mediated Neuronal Autophagy Following Traumatic Brain Injury

Dai Li et al. Neurochem Res. 2019 Aug.

Abstract

In our recent study, we observed consistent increases in miR-124-3p levels in exosomes derived from cultured BV2 microglia which was treated with repetitive traumatic brain injury (rTBI) mouse model brain extracts. To clarify the mechanisms underlying increases in microglia-derived exosomal miR-124-3p and their role in regulating neuronal autophagy after TBI, we investigated the impact of exosomal miR-124-3p on neuronal autophagy in scratch-injured HT22 neurons and rTBI mice. We harvested injured brain extracts from rTBI mice at 3 to 21 days post injury (DPI) for the treatment of cultured BV2 microglia in vitro. We observed significant induction of autophagy following TBI in vitro, and that inhibition of activated neuronal autophagy could protect against trauma-induced injury. Our results indicated that co-culture of injured HT22 neurons with miR-124-3p overexpressing BV2 microglia exerted a protective effect by inhibiting neuronal autophagy in scratch-injured neurons. Further research revealed that these effects were achieved mainly via upregulation of exosomal miR-124-3p, and that Focal adhesion kinase family-interacting protein of 200 kDa (FIP200) plays a key role in trauma-induced autophagy. Injection of exosomes into the vena caudalis in in vivo experiments revealed that exosomal miR-124-3p was associated with decreases in the modified neurological severity score (mNSS) and improvements in Morris water maze (MWM) test results in rTBI mice. Altogether, our results indicate that increased miR-124-3p in microglial exosomes following TBI may inhibit neuronal autophagy and protect against nerve injury via their transfer into neurons. Thus, treatment with microglial exosomes enriched with miR-124-3p may represent a novel therapeutic strategy for the treatment of nerve injury after TBI.

Keywords: Autophagy; Exosomes; Microglia; Traumatic brain injury; miRNA.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Stroke. 2001 Nov;32(11):2682-8 - PubMed
    1. Mol Biol Cell. 2002 Sep;13(9):3178-91 - PubMed
    1. Nature. 2004 Sep 2;431(7004):31-2 - PubMed
    1. J Immunol. 2005 Aug 15;175(4):2237-43 - PubMed
    1. Autophagy. 2007 Sep-Oct;3(5):422-32 - PubMed

LinkOut - more resources