Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 16:14:3601-3613.
doi: 10.2147/IJN.S193617. eCollection 2019.

Integration of PEG 400 into a self-nanoemulsifying drug delivery system improves drug loading capacity and nasal mucosa permeability and prolongs the survival of rats with malignant brain tumors

Affiliations

Integration of PEG 400 into a self-nanoemulsifying drug delivery system improves drug loading capacity and nasal mucosa permeability and prolongs the survival of rats with malignant brain tumors

Yu-Shuan Chen et al. Int J Nanomedicine. .

Abstract

Introduction: Kolliphor® EL (K-EL) is among the most useful surfactants in the preparation of emulsions. However, it is associated with low hydrophobic drug loading in the resulting emulsified formulation. Methods: In this study, a formulation for intranasal administration of butylidenephthalide (Bdph), a candidate drug against glioblastoma (GBM), was prepared. Physical characteristics of the formulation such as particle size, zeta potential, conductivity, and viscosity were assessed, as well as its cytotoxicity and permeability, in order to optimize the formulation and improve its drug loading capacity. Results: The optimized formulation involved the integration of polyethylene glycol 400 (PEG 400) in K-EL to encapsulate Bdph dissolved in dimethyl sulfoxide (DMSO), and it exhibited higher drug loading capacity and drug solubility in water than the old formulation, which did not contain PEG 400. Incorporation of PEG 400 as a co-surfactant increased Bdph loading capacity to up to 50% (v/v), even in formulations using Kolliphor® HS 15 (K-HS15) as a surfactant, which is less compatible with Bdph than K-EL. The optimized Bdph formulation presented 5- and 2.5-fold higher permeability and cytotoxicity, respectively, in human GBM than stock Bdph. This could be attributed to the high drug loading capacity and the high polarity index due to DMSO, which increases the compatibility between the drug and the cell. Rats bearing a brain glioma treated with 160 mg/kg intranasal emulsified Bdph had a mean survival of 37 days, which is the same survival time achieved by treatment with 320 mg/kg stock Bdph. This implies that the optimized emulsified formulation required only half the Bdph dose to achieve an efficacy similar to that of stock Bdph in the treatment of animals with malignant brain tumor.

Keywords: butylidenephthalide; glioblastoma; intranasal administration; loading capacity; permeability; polyethylene glycol 400.

PubMed Disclaimer

Conflict of interest statement

The formulation has been patented in the USA (Patent No. US9504751 (B2)). Miss Yu-Shuan Chen reports non-financial support from National Science Council of the Republic of China, Taiwan, during the conduct of the study. Dr Shinn-Zong Lin reports non-financial support from National Science Council of the Republic of China, Taiwan, during the conduct of the study. Dr Tzyy-Wen Chiou reports grants from National Science Council, Taiwan, Republic of China, during the conduct of the study. The authors report no further conflicts of interest in this work.

Figures

Figure 1
Figure 1
(A) Cell cytotoxicity analysis of emulsified n-butylidenephthalide (Bdph) formulations in GBM8401. Abbreviation BP indicates that Bdph was dissolved in DMSO. The data are expressed as mean ± SD; *p<0.05, **p<0.01, ***p<0.001 versus BP. (B) Stability examination of freshly prepared emulsified Bdph formulations (BN-A (A), BN-B (B), BN-C (C), BN-D (D), BN-E (E), BN-F (F), BN-G (G), BN-H (I), BN-I (I)) and (C) stability examination after 30 days storage at 4 °C. An arrow indicates sedimentation, and a frame line means an insoluble layer was formed. The formulation for each emulsion is given in Table 1.
Figure S1
Figure S1
Dynamic viscosities of emulsified n-butylidenephthalide (Bdph) formulations with increased shear rate.
Figure 2
Figure 2
(A) Kaplan–Meier survival curves and (B) mean survival times of rats bearing malignant brain tumors after treatment with n-butylidenephthalide (Bdph) formulation. The composition of BN-F is given in Table 1. *p<0.05, **p<0.01, ***p<0.0005 compared with the non-treated group.
Figure S2
Figure S2
Transmission electron microscopy image of emulsified n-butylidenephthalide (Bdph) formulation BN-F. The white arrows indicate the double layer structure of the BN-F formulation.
Figure S3
Figure S3
(A) Appearance and (B) weight of tumors from rats sacrificed at 37 days with or without treatment. The data are expressed as mean ±/SD; **p<0.01 versus no-treatment group.

Similar articles

Cited by

References

    1. Anjum K, Shagufta BI, Abbas SQ, et al. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review. Biomed Pharmacother. 2017;92:681–689. doi:10.1016/j.biopha.2017.05.125 - DOI - PubMed
    1. Davis ME. Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs. 2016;20:S2–8. doi:10.1188/16.CJON.S1.2-8 - DOI - PMC - PubMed
    1. Chen L, Chaichana KL, Kleinberg L, Ye X, Quinones-Hinojosa A, Redmond K. Glioblastoma recurrence patterns near neural stem cell regions. Radiother Oncol. 2015;116:294–300. doi:10.1016/j.radonc.2015.07.032 - DOI - PMC - PubMed
    1. Fu P, He YS, Huang Q, et al. Bevacizumab treatment for newly diagnosed glioblastoma: systematic review and meta-analysis of clinical trials. Mol Clin Oncol. 2016;4:833–838. doi:10.3892/mco.2016.816 - DOI - PMC - PubMed
    1. Roy S, Lahiri D, Maji T, Biswas J. Recurrent Glioblastoma: where we stand. South Asian J Cancer. 2015;4:163–173. doi:10.4103/2278-330X.175953 - DOI - PMC - PubMed

MeSH terms