Invasion reproductive numbers for periodic epidemic models
- PMID: 31193521
- PMCID: PMC6531838
- DOI: 10.1016/j.idm.2019.04.002
Invasion reproductive numbers for periodic epidemic models
Erratum in
-
Erratum regarding missing Declaration of Competing Interest statements in previously published articles.Infect Dis Model. 2020 Dec 17;6:1260. doi: 10.1016/j.idm.2020.12.004. eCollection 2021. Infect Dis Model. 2020. PMID: 34938927 Free PMC article.
Abstract
There are many cases within epidemiology where infections compete to persist within a population. In studying models for such cases, one of the goals is to determine which infections can invade a population and persist when other infections are already resident within the population. Invasion reproductive numbers (IRN), which are tied to the stability of boundary endemic equilibria, can address this question. By reinterpreting resident infections epidemiologically, this study extends methods for finding IRNs to periodic systems, and presents some examples which illustrate the often complex computations required. Results identify conditions under which a simple time-average can be used to derive IRNs, and apply the methods to examine how seasonal fluctuations in influenza incidence facilitate the year-round persistence of bacterial respiratory infections.
Keywords: Basic reproductive number; Mathematical epidemiology; Periodic models.
Figures





Similar articles
-
Invasion reproductive numbers for discrete-time models.Infect Dis Model. 2019 Apr 4;4:44-72. doi: 10.1016/j.idm.2019.03.002. eCollection 2019. Infect Dis Model. 2019. PMID: 31016273 Free PMC article.
-
A Comparison of Methods for Calculating the Basic Reproductive Number for Periodic Epidemic Systems.Bull Math Biol. 2017 Aug;79(8):1846-1869. doi: 10.1007/s11538-017-0309-y. Epub 2017 Jun 15. Bull Math Biol. 2017. PMID: 28620881
-
Incorporating immunological ideas in epidemiological models.J Theor Biol. 1996 Jun 7;180(3):181-7. doi: 10.1006/jtbi.1996.0094. J Theor Biol. 1996. PMID: 8759527
-
Mathematical prediction in infection.Medicine (Abingdon). 2009 Oct;37(10):507-509. doi: 10.1016/j.mpmed.2009.07.004. Epub 2009 Sep 19. Medicine (Abingdon). 2009. PMID: 32288567 Free PMC article. Review.
-
The invasion, persistence and spread of infectious diseases within animal and plant communities.Philos Trans R Soc Lond B Biol Sci. 1986 Dec 15;314(1167):533-70. doi: 10.1098/rstb.1986.0072. Philos Trans R Soc Lond B Biol Sci. 1986. PMID: 2880354 Review.
Cited by
-
Invasion reproductive numbers for discrete-time models.Infect Dis Model. 2019 Apr 4;4:44-72. doi: 10.1016/j.idm.2019.03.002. eCollection 2019. Infect Dis Model. 2019. PMID: 31016273 Free PMC article.
-
A cyclic behavioral modeling aspect to understand the effects of vaccination and treatment on epidemic transmission dynamics.Sci Rep. 2023 May 23;13(1):8356. doi: 10.1038/s41598-023-35188-3. Sci Rep. 2023. PMID: 37221186 Free PMC article.
-
Evolution into chaos - Implications of the trade-off between transmissibility and immune evasion.Infect Dis Model. 2025 Apr 7;10(3):909-923. doi: 10.1016/j.idm.2025.04.003. eCollection 2025 Sep. Infect Dis Model. 2025. PMID: 40322073 Free PMC article.
-
Coinfection, Altered Vector Infectivity, and Antibody-Dependent Enhancement: The Dengue-Zika Interplay.Bull Math Biol. 2020 Jan 14;82(1):13. doi: 10.1007/s11538-019-00681-2. Bull Math Biol. 2020. PMID: 31933003 Free PMC article.
References
-
- Aulbach B., Wanner T. The Hartman-Grobman Theorem for Carathéodory-type differential equations in Banach spaces. Nonlinear Analysis. 2000;40:91–104.
-
- Bacäer N. Approximation of the basic reproductive number R0 for vector-borne diseases with a periodic vector population. Bulletin of Mathematical Biology. 2007;69:1067–1091. - PubMed
-
- Bacaër N., Ait Dads E.H. On the biological interpretation of a definition for the parameter R0 in periodic population models. Journal of Mathematical Biology. 2012;65:601–621. - PubMed
-
- Bacäer N., Guernaoui S. The epidemic threshold of vector-borne disease with seasonality. Journal of Mathematical Biology. 2006;53:421–436. - PubMed
LinkOut - more resources
Full Text Sources