Data set of in silico simulation for the production of clavulanic acid and cephamycin C by Streptomyces clavuligerus using a genome scale metabolic model
- PMID: 31193725
- PMCID: PMC6538926
- DOI: 10.1016/j.dib.2019.103992
Data set of in silico simulation for the production of clavulanic acid and cephamycin C by Streptomyces clavuligerus using a genome scale metabolic model
Abstract
Streptomyces clavuligerus (S. clavuligerus) is a Gram-positive bacterium which produced clavulanic acid (CA) and cephamycin C (CephC). In this data article, a curated genome scale metabolic model of S. clavuligerus is presented. A total of eighteen objective functions were evaluated for a better representation of CA and CephC production by S. clavuligerus. The different objective functions were evaluated varying the weighting factors of CA and CephC between 0, 1 y 2, whereas for the case of biomass the weight factor was varied between 1 and 2. A robustness analysis, by mean of flux balance analysis, showed five different metabolic phenotypes of S. clavuligerus as a function of oxygen uptake: (I) and (II) biomass production, (III) biomass and CephC production, (IV) simultaneous production of biomass, CA and CephC and (V) production of biomass and CA. Data of shadow prices and reduced cost are also presented.
Figures
Similar articles
-
Clavulanic Acid Production by Streptomyces clavuligerus: Insights from Systems Biology, Strain Engineering, and Downstream Processing.Antibiotics (Basel). 2021 Jan 18;10(1):84. doi: 10.3390/antibiotics10010084. Antibiotics (Basel). 2021. PMID: 33477401 Free PMC article. Review.
-
TCA Cycle and Its Relationship with Clavulanic Acid Production: A Further Interpretation by Using a Reduced Genome-Scale Metabolic Model of Streptomyces clavuligerus.Bioengineering (Basel). 2021 Jul 22;8(8):103. doi: 10.3390/bioengineering8080103. Bioengineering (Basel). 2021. PMID: 34436106 Free PMC article.
-
Dissociation of cephamycin C and clavulanic acid biosynthesis by 1,3-diaminopropane in Streptomyces clavuligerus.FEMS Microbiol Lett. 2016 Jan;363(1):fnv215. doi: 10.1093/femsle/fnv215. Epub 2015 Nov 11. FEMS Microbiol Lett. 2016. PMID: 26564965
-
Homologous expression of lysA encoding diaminopimelic acid (DAP) decarboxylase reveals increased antibiotic production in Streptomyces clavuligerus.Braz J Microbiol. 2020 Jun;51(2):547-556. doi: 10.1007/s42770-019-00202-2. Epub 2019 Dec 12. Braz J Microbiol. 2020. PMID: 31833007 Free PMC article.
-
Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement.J Antibiot (Tokyo). 2013 Jul;66(7):411-20. doi: 10.1038/ja.2013.26. Epub 2013 Apr 24. J Antibiot (Tokyo). 2013. PMID: 23612724 Review.
Cited by
-
Clavulanic Acid Production by Streptomyces clavuligerus: Insights from Systems Biology, Strain Engineering, and Downstream Processing.Antibiotics (Basel). 2021 Jan 18;10(1):84. doi: 10.3390/antibiotics10010084. Antibiotics (Basel). 2021. PMID: 33477401 Free PMC article. Review.
-
A Genome-Scale Insight into the Effect of Shear Stress During the Fed-Batch Production of Clavulanic Acid by Streptomyces Clavuligerus.Microorganisms. 2020 Aug 19;8(9):1255. doi: 10.3390/microorganisms8091255. Microorganisms. 2020. PMID: 32824882 Free PMC article.
-
Environmental Factors Modulate the Role of orf21 Sigma Factor in Clavulanic Acid Production in Streptomyces Clavuligerus ATCC27064.Bioengineering (Basel). 2022 Feb 16;9(2):78. doi: 10.3390/bioengineering9020078. Bioengineering (Basel). 2022. PMID: 35200432 Free PMC article.
-
TCA Cycle and Its Relationship with Clavulanic Acid Production: A Further Interpretation by Using a Reduced Genome-Scale Metabolic Model of Streptomyces clavuligerus.Bioengineering (Basel). 2021 Jul 22;8(8):103. doi: 10.3390/bioengineering8080103. Bioengineering (Basel). 2021. PMID: 34436106 Free PMC article.
References
-
- López Revelles M.O. 2005. Caracteriación de las rutas de catabolismo de L-lisina en Pseudomonas putida KT2440.
-
- Hochster R.M., Watson R.W. Enzymatic isomerization of d-xylose to d-xylulose. Arch. Biochem. Biophys. 1954;48:120–129. - PubMed
-
- Schlösser A. MsiK-dependent trehalose uptake in Streptomyces reticuli. FEMS Microbiol. Lett. 2000;184:187–192. - PubMed
-
- Ashwell Gilbert H.J. 1960. Wahba Albert, Uronic Acid Metabolism in Bacteria; p. 235. - PubMed
LinkOut - more resources
Full Text Sources