Human embryonic hemopoiesis: control mechanisms underlying progenitor differentiation in vitro
- PMID: 3119398
- DOI: 10.1016/0012-1606(88)90065-6
Human embryonic hemopoiesis: control mechanisms underlying progenitor differentiation in vitro
Abstract
In order to investigate differences in control mechanisms between embryonic and adult hemopoiesis, we have studied the sensitivity of human embryonic progenitors (5-8 weeks postconception) to either positive (erythropoietin (Ep), granulocyte-macrophage colony-stimulating factor (GM-CSF) and insulin-like growth factor 1 (IGF-1] or negative (tumor necrosis factor (TNF) and interferon-gamma (IFN-gamma] in vitro regulators of adult hemopoietic differentiation. Growth stimulators were analyzed under serum-deprived conditions whereas growth inhibitors were investigated in serum-supplemented culture. Formation of granulocyte-macrophage colonies from embryonic progenitors was induced by GM-CSF but inhibited by TNF and IFN-gamma. Early erythroid progenitors resemble adult erythroid burst-forming cells (BFU-E) in their sensitivity to Ep and TNF but differ in their lack of response to GM-CSF or other adult sources of burst-promoting activity, and absence of inhibition by IFN-gamma. IGF-1 promoted erythroid burst formation in the absence of insulin, but did not have Ep-like activity. These data indicate that embryonic and adult erythroid progenitors differ at least in terms of in vitro sensitivity to GM-CSF and IFN-gamma and suggest that different cellular response to control signals may underlie the differences observed in vivo between embryonic and adult hemopoiesis.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
