Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 13;14(6):e0217570.
doi: 10.1371/journal.pone.0217570. eCollection 2019.

Can clinical prediction models assess antibiotic need in childhood pneumonia? A validation study in paediatric emergency care

Affiliations

Can clinical prediction models assess antibiotic need in childhood pneumonia? A validation study in paediatric emergency care

Josephine van de Maat et al. PLoS One. .

Abstract

Objectives: Pneumonia is the most common bacterial infection in children at the emergency department (ED). Clinical prediction models for childhood pneumonia have been developed (using chest x-ray as their reference standard), but without implementation in clinical practice. Given current insights in the diagnostic limitations of chest x-ray, this study aims to validate these prediction models for a clinical diagnosis of pneumonia, and to explore their potential to guide decisions on antibiotic treatment at the ED.

Methods: We systematically identified clinical prediction models for childhood pneumonia and assessed their quality. We evaluated the validity of these models in two populations, using a clinical reference standard (1. definite/probable bacterial, 2. bacterial syndrome, 3. unknown bacterial/viral, 4. viral syndrome, 5. definite/probable viral), measuring performance by the ordinal c-statistic (ORC). Validation populations included prospectively collected data of children aged 1 month to 5 years attending the ED of Rotterdam (2012-2013) or Coventry (2005-2006) with fever and cough or dyspnoea.

Results: We identified eight prediction models and could evaluate the validity of seven, with original good performance. In the Dutch population 22/248 (9%) had a bacterial infection, in Coventry 53/301 (17%), antibiotic prescription was 21% and 35% respectively. Three models predicted a higher risk in children with bacterial infections than in those with viral disease (ORC ≥0.55) and could identify children at low risk of bacterial infection.

Conclusions: Three clinical prediction models for childhood pneumonia could discriminate fairly well between a clinical reference standard of bacterial versus viral infection. However, they all require the measurement of biomarkers, raising questions on the exact target population when implementing these models in clinical practice. Moreover, choosing optimal thresholds to guide antibiotic prescription is challenging and requires careful consideration of potential harms and benefits.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Performance of prediction models.
a. Models with risk classification (high vs. low predicted risk) b. Models with probability (% predicted risk). DPB = definite or probable bacterial, BS = bacterial syndrome, U = unknown, VS = viral syndrome, DPV = definite or probable viral; ORC = ordinal c-statistic; SD = standard deviation.

Similar articles

Cited by

References

    1. Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385(9966):430–40. 10.1016/S0140-6736(14)61698-6 . - DOI - PubMed
    1. Collaborators GBDLRI. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18(11):1191–210. Epub 2018/09/24. [pii] 10.1016/S1473-3099(18)30310-4 - DOI - PMC - PubMed
    1. van de Maat J, van de Voort E, Mintegi S, Gervaix A, Nieboer D, Moll H, et al. Antibiotic prescription for febrile children in European emergency departments: a cross-sectional, observational study. Lancet Infect Dis. 2019: Epub 2019/02/28/. 10.1016/S1473-3099(18)30672-8 - DOI - PubMed
    1. Harris M, Clark J, Coote N, Fletcher P, Harnden A, McKean M, et al. British Thoracic Society guidelines for the management of community acquired pneumonia in children: update 2011. Thorax. 2011;66 Suppl 2:ii1–23. Epub 2011/10/19. thoraxjnl-2011-200598 [pii] 10.1136/thoraxjnl-2011-200598 . - DOI - PubMed
    1. Van Den Bruel A, Thompson MJ, Haj-Hassan T, Stevens R, Moll H, Lakhanpaul M, et al. Diagnostic value of laboratory tests in identifying serious infections in febrile children: Systematic review. BMJ. 2011;342(7810). 10.1136/bmj.d3082 - DOI - PubMed

Publication types

MeSH terms