Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jun 13;15(6):e1007740.
doi: 10.1371/journal.ppat.1007740. eCollection 2019 Jun.

Microbiota-mediated disease resistance in plants

Affiliations
Review

Microbiota-mediated disease resistance in plants

Nathan Vannier et al. PLoS Pathog. .
No abstract available

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Microbiota-mediated extension of the plant immune system.
Extracellular PRRs recognize MAMPs and DAMPs at the cell membrane. Intracellularly, NLRs recognize pathogen effectors either directly or indirectly by monitoring host proteins targeted by effectors. This innate immune system is modulated by the microbiota (i.e., MMI), which induces systemic resistance and enhances plant resistance to pathogens. In addition, the plant microbiota provides direct protective activity against microbial pathogens via DMC. DMC includes competition for nutrients and space as well as secretion of antimicrobials, and these interactions are integrated into a complex network that dictates pathogen growth in planta. ADP, adenosine diphosphate; ATP, adenosine triphosphate; DAMP, damage-associated molecular pattern; DMC, direct microbial competition; NLR, nucleotide-binding domain and leucine-rich repeat-containing receptor; MAMP, microbe-associated molecular pattern; MMI, microbiota-modulated immunity; PRR, pattern recognition receptor.
Fig 2
Fig 2. Rational design of SynComs with predictable pathogen biocontrol activities.
Starting in the field where a pathogen outbreak has occurred, the microbiota of diseased and healthy plants are characterized and isolated. The isolates are screened in binary microbe–microbe and in planta ternary interactions to detect and catalogue traits linked to DMC and MMI. From the obtained catalogue, activities of individual strains can be used to design more complex SynComs while taking into account trait redundancy, dominance, and modularity. In parallel, interaction networks are inferred from sequencing data, and potential key organisms are identified based on hub structural properties or functional modules. This network inference helps with prioritizing candidate strains for targeted screening of DMC and MMI traits. Both trait-based and structure-based approaches can inform the rational design of SynComs with stable and effective biocontrol activities in the field. DMC, direct microbial competition; MMI, microbiota-modulated immunity; SynComs, synthetic microbial communities.

Similar articles

Cited by

References

    1. Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. The global burden of pathogens and pests on major food crops. Nat Ecol Evol. 2019;3(3):430–439. 10.1038/s41559-018-0793-y - DOI - PubMed
    1. McDonald BA, Stukenbrock EH. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philos Trans R Soc Lond B Biol Sci. 2016;371(1709):20160026 10.1098/rstb.2016.0026 - DOI - PMC - PubMed
    1. Finkel OM, Castrillo G, Herrera Paredes S, Salas Gonzalez I, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63. 10.1016/j.pbi.2017.04.018 - DOI - PMC - PubMed
    1. Berg M, Koskella B. Nutrient- and Dose-Dependent Microbiome-Mediated Protection against a Plant Pathogen. Curr Biol. 2018;28(15):2487–92 e3. - PubMed
    1. Castrillo G, Teixeira PJ, Paredes SH, Law TF, de Lorenzo L, Feltcher ME, et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature. 2017;543(7646):513–8. 10.1038/nature21417 - DOI - PMC - PubMed

Publication types

MeSH terms