Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jun 13;14(1):140.
doi: 10.1186/s13023-019-1112-7.

Cardiac characteristics and natural progression in Taiwanese patients with mucopolysaccharidosis III

Affiliations
Review

Cardiac characteristics and natural progression in Taiwanese patients with mucopolysaccharidosis III

Hsiang-Yu Lin et al. Orphanet J Rare Dis. .

Abstract

Background: Mucopolysaccharidosis type III (MPS III), or Sanfilippo syndrome, is caused by a deficiency in one of the four enzymes involved in the lysosomal degradation of heparan sulfate. Cardiac abnormalities have been observed in patients with all types of MPS except MPS IX, however few studies have focused on cardiac alterations in patients with MPS III.

Methods: We reviewed medical records, echocardiograms, and electrocardiograms of 26 Taiwanese patients with MPS III (five with IIIA, 20 with IIIB, and one with IIIC; 14 males and 12 females; median age, 7.4 years; age range, 1.8-26.5 years). The relationships between age and each echocardiographic parameter were analyzed.

Results: Echocardiographic examinations (n = 26) revealed that 10 patients (38%) had valvular heart disease. Four (15%) and eight (31%) patients had valvular stenosis or regurgitation, respectively. The most prevalent cardiac valve abnormality was mitral regurgitation (31%), followed by aortic regurgitation (19%). However, most of the cases of valvular heart disease were mild. Three (12%), five (19%) and five (19%) patients had mitral valve prolapse, a thickened interventricular septum, and asymmetric septal hypertrophy, respectively. The severity of aortic regurgitation and the existence of valvular heart disease, aortic valve abnormalities and valvular stenosis were all positively correlated with increasing age (p < 0.05). Z scores > 2 were identified in 0, 38, 8, and 27% of left ventricular mass index, interventricular septal end-diastolic dimension, left ventricular posterior wall end-diastolic dimension, and aortic diameter, respectively. Electrocardiograms in 11 patients revealed the presence of sinus arrhythmia (n = 3), sinus bradycardia (n = 2), and sinus tachycardia (n = 1). Six patients with MPS IIIB had follow-up echocardiographic data at 1.9-18.1 years to compare with the baseline data, which showed some patients had increased thickness of the interventricular septum, as well as more patients had valvular abnormalities at follow-up.

Conclusions: Cardiac involvement in MPS III is less common and milder compared with other types of MPS. The existence of valvular heart disease, aortic valve abnormalities and valvular stenosis in the patients worsened with increasing age, reinforcing the concept of the progressive nature of this disease.

Keywords: Cardiac; Echocardiography; Electrocardiography; Mucopolysaccharidosis III; Valvular heart disease.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Relationships between age and severity of cardiac valve abnormalities in the 26 patients with MPS III. a MS, mitral stenosis; b MR, mitral regurgitation; c AS, aortic stenosis; d AR, aortic regurgitation. Severity of valvular stenosis and regurgitation (MS, MR, AS, AR) were estimated and graded as follows: 0 (none), 1 (mild), 2 (moderate), and 3 (severe)

Similar articles

Cited by

References

    1. Neufeld EF, Muenzer J: The mucoplysaccharidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The metabolic and molecular bases of inherited disease, 8th edn. New York: McGraw-Hill; 2001, 3421–3452.
    1. Dangel JH. Cardiovascular changes in children with mucopolysaccharide storage diseases and related disorders--clinical and echocardiographic findings in 64 patients. Eur J Pediatr. 1998;157:534–538. doi: 10.1007/s004310050872. - DOI - PubMed
    1. Fesslová V, Corti P, Sersale G, Rovelli A, Russo P, Mannarino S, et al. The natural course and the impact of therapies of cardiac involvement in the mucopolysaccharidoses. Cardiol Young. 2009;19:170–178. doi: 10.1017/S1047951109003576. - DOI - PubMed
    1. Mohan UR, Hay AA, Cleary MA, Wraith JE, Patel RG. Cardiovascular changes in children with mucopolysaccharide disorders. Acta Paediatr. 2002;91:799–804. doi: 10.1111/j.1651-2227.2002.tb03330.x. - DOI - PubMed
    1. Wippermann CF, Beck M, Schranz D, Huth R, Michel-Behnke I, Jüngst BK. Mitral and aortic regurgitation in 84 patients with mucopolysaccharidoses. Eur J Pediatr. 1995;154:98–101. doi: 10.1007/BF01991908. - DOI - PubMed

Publication types