Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Dec;65(6):1201-9.
doi: 10.1210/jcem-65-6-1201.

Regulation of 1,25-dihydroxyvitamin D3 production by cultured alveolar macrophages from normal human donors and from patients with pulmonary sarcoidosis

Affiliations

Regulation of 1,25-dihydroxyvitamin D3 production by cultured alveolar macrophages from normal human donors and from patients with pulmonary sarcoidosis

H Reichel et al. J Clin Endocrinol Metab. 1987 Dec.

Abstract

Regulation of the production of the biologically active vitamin D3 sterol 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] by cultured pulmonary alveolar macrophages (PAM) obtained from 6 patients with pulmonary sarcoidosis and from 9 normal subjects was studied. The sarcoid cells, all collected from patients with normal calcium metabolism, synthesized 1,25-(OH)2-[3H]D3 from the substrate 25-hydroxyvitamin [3H]D3 (25OH-[3H]D3), whereas in vitro incubation with recombinant human interferon-gamma (IFN gamma) or lipopolysaccharide (LPS) was required for induction of synthesis of the hormone by normal PAM. Exogenous 1,25-(OH)2D3 (10-100 nmol/L) decreased endogenous hormone production by normal PAM by approximately 45%. The relative inhibitory effect of 1,25-(OH)2D3 was less pronounced in sarcoid PAM, in which 10-100 nmol/L 1,25-(OH)2D3 inhibited 250HD3-1-hydroxylase by approximately 25%. An accompanying induction of the 250HD3-24-hydroxylase, which is typical for renal cells, was found at low levels in only 3 of 10 experiments; in this regard, no differences between sarcoid and normal PAM were apparent. PTH or forskolin did not influence 250HD3 metabolism by PAM. 1,25-(OH)2D3 production by sarcoid PAM was enhanced by lipopolysaccharide and IFN gamma. Likewise, recombinant human interleukin-2 stimulated 1,25-(OH)2D3 production by sarcoid PAM, suggesting a possible role for both IFN gamma and interleukin-2 in the induction of 1,25-(OH)2D3 synthesis by sarcoid PAM in vivo. Recombinant human IFN alpha, IFN beta, and granulocyte-macrophage colony-stimulating factor had little effect. Dexamethasone and chloroquine, which have in vivo antihypercalcemic activity in sarcoidosis, both inhibited 1,25-(OH)2D3 synthesis by sarcoid PAM; chloroquine simultaneously stimulated the 24-hydroxylase. Our studies suggest that the 250HD3-metabolizing system in PAM is in some respects different from renal metabolism of 250HD3.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources