Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Apr-Jun;9(2):72-92.
doi: 10.4103/tjo.tjo_35_18.

Polypoidal choroidal vasculopathy: An update on current management and review of literature

Affiliations
Review

Polypoidal choroidal vasculopathy: An update on current management and review of literature

Amit Harishchandra Palkar et al. Taiwan J Ophthalmol. 2019 Apr-Jun.

Abstract

Polypoidal choroidal vasculopathy (PCV) is a subtype of neovascular age-related macular degeneration (nAMD), commonly seen in the Asian population. It is dissimilar in epidemiology, genetic heterogeneity, pathogenesis, natural history, and response to treatment in comparison to nAMD. Confocal scanning laser ophthalmoscopy-based simultaneous fluorescein angiography and indocyanine green angiography, spectral-domain optical coherence tomography (OCT) with enhanced depth imaging, swept-source OCT, and OCT angiography have improved the ability to detect PCV, understand its pathology, and monitor treatment response. A plethora of literature has discussed the efficacy of photodynamic therapy, anti-vascular endothelial growth factor (VEGF) monotherapy, and combination of both, but only a few studies with higher level of evidence and limited follow-up duration are available. This review discusses the understanding of PCV with respect to epidemiology, pathogenesis, clinical features, natural history, imaging techniques, and various treatment options. Recent clinical trials (EVEREST-II and PLANET study) have emphasized that either anti-VEGF monotherapy or combination treatment is equally capable to strike a balance between polyp regression and stabilization of visual acuity. The recurrent nature of the disease, the development of macular atrophy, and the long-term poor visual prognosis despite treatment are concerns that open avenues for further research.

Keywords: Epidemiology; imaging; natural history; pathogenesis; polypoidal choroidal vasculopathy; treatment.

PubMed Disclaimer

Conflict of interest statement

The authors declare that there are no conflicts of interests of this paper.

Figures

Figure 1
Figure 1
(a) Peripapillary polypoidal choroidal vasculopathy with subretinal pigment epithelium hemorrhage (gray-green) and hard exudates (top left); fluorescein angiography featuring classic choroidal neovascular membrane (top middle) and indocyanine green angiography detecting the polypoidal lesion within the blocked cyanescence due to hemorrhage below the retinal pigment epithelium (top right). (b) A well-circumscribed hemorrhagic pigment epithelial detachment with orange-red nodular lesions at the temporal edge of the pigment epithelial detachment and subretinal hemorrhage (bottom left); stippled hyperfluorescence on fluorescein angiography (bottom middle) and a small branching vascular network with single polypoidal lesion identified on indocyanine green angiography (bottom right)
Figure 2
Figure 2
(a) A “V” depression between two pigment epithelial detachments – “notch” sign (red arrowhead) with moderate hyperreflectivity below the smaller pigment epithelial detachment representing polypoidal lesion beneath. (b) Thumb-shaped pigment epithelial detachment with an abutting moderate hyperreflective ring with surrounding hyporeflective area (yellow dot) demonstrating the lumen of the polypoid lesion. Two hyperreflective membranes (green line with arrows), a double membrane sign, correlating with the branching vascular network
Figure 3
Figure 3
A 51-year-old woman with diminution of vision (OD-20/30) had (a) hemorrhages both in the subretinal pigment epithelium and subretinal space extending to the arcades with massive exudation. (c) Fluorescein angiography shows blocked fluorescence due to subretinal and sub-retinal pigment epithelium hemorrhage with stippled hyperfluorescence inferotemporal to fovea, which is identified as branching vascular network with polypoidal lesions at the temporal edge of the lesion in indocyanine green angiography (e). (g) The spectral-domain optical coherence tomography B-scan shows a subfoveal hemorrhagic pigment epithelial detachment, with minimal subretinal fluid and hyperreflective hard exudates. She received intravitreal aflibercept monotherapy and status post five injections, (b) exudation, subretinal and sub-retinal pigment epithelium hemorrhage reduced clinically, with persistent stippled fluorescence in fluorescein angiography (d), better delineation of branching vascular network with indocyanine green angiography (f). (h) Spectral-domain optical coherence tomography B-scan demonstrates subretinal fluid, pigment epithelial detachment with serous conversion and reduction in size and branching vascular network abutting the retinal pigment epithelium (blue asterisk)

Similar articles

Cited by

References

    1. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic polypoidal choroidal vasculopathy (IPCV) Retina. 1990;10:1–8. - PubMed
    1. Spaide RF, Yannuzzi LA, Slakter JS, Sorenson J, Orlach DA. Indocyanine green videoangiography of idiopathic polypoidal choroidal vasculopathy. Retina. 1995;15:100–10. - PubMed
    1. Laude A, Cackett PD, Vithana EN, Yeo IY, Wong D, Koh AH, et al. Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: Same or different disease? Prog Retin Eye Res. 2010;29:19–29. - PubMed
    1. Nowak-Sliwinska P, van den Bergh H, Sickenberg M, Koh AH. Photodynamic therapy for polypoidal choroidal vasculopathy. Prog Retin Eye Res. 2013;37:182–99. - PubMed
    1. Stanga PE, Lim JI, Hamilton P. Indocyanine green angiography in chorioretinal diseases: Indications and interpretation: An evidence-based update. Ophthalmology. 2003;110:15–21. - PubMed