Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 1;60(10):2220-2230.
doi: 10.1093/pcp/pcz115.

OsC2DP, a Novel C2 Domain-Containing Protein Is Required for Salt Tolerance in Rice

Affiliations

OsC2DP, a Novel C2 Domain-Containing Protein Is Required for Salt Tolerance in Rice

Shan Fu et al. Plant Cell Physiol. .

Abstract

Salt stress is one of the major factors limiting crop production globally, including rice (Oryza sativa). Although a number of genes involved in salt tolerance have been functionally identified, the mechanism underlying salt tolerance in rice is still poorly understood. Here, we reported a novel C2 domain-containing protein, OsC2DP required for salt tolerance in rice. OsC2DP was predominately expressed in the roots and its expression was repressed by salt stress. Transient expression of OsC2DP in rice protoplast cells showed that it was localized in the cytosol. Immunostaining further showed that OsC2DP was able to translocate from the cytosol to plasma membrane under salt conditions. Knockout of OsC2DP did not affect Na+ concentration in the roots, but increased shoot Na+ concentration, resulting in a significant sensitivity of rice to salt stress. Furthermore, the quantitative Real-time PCR and transcriptomic analysis showed that the expression level of some genes related to salt tolerance were indirectly regulated by OsC2DP, especially OsSOS1 and OsNHX4. These results indicate that OsC2DP has an important role in salt tolerance and these findings provide new insights into the regulation of OsC2DP gene for rice breeding with high salt tolerance.

Keywords: C2 domain; Ion homeostasis; RNA-seq; Rice; Salinity.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources