Treatment of Buffalo (Bubalus bubalis) Somatic Cell Nuclear Transfer Embryos with MicroRNA-29b Mimic Improves Their Quality, Reduces DNA Methylation, and Changes Gene Expression Without Affecting Their Developmental Competence
- PMID: 31199675
- DOI: 10.1089/cell.2019.0007
Treatment of Buffalo (Bubalus bubalis) Somatic Cell Nuclear Transfer Embryos with MicroRNA-29b Mimic Improves Their Quality, Reduces DNA Methylation, and Changes Gene Expression Without Affecting Their Developmental Competence
Abstract
microRNA-29b (miR-29b) plays an important role in controlling DNA methylation in cells. We investigated its role during early embryonic development in buffalo embryos produced by somatic cell nuclear transfer (SCNT) and in vitro fertilization (IVF). miR-29b expression was highest at the 2-cell stage, decreased (p < 0.001) at the 4-cell stage, and remained low thereafter at the 8-cell, morula, and blastocyst stages, showing a similar pattern in cloned and IVF embryos. Treatment of reconstructed embryos with miR-29b mimic for 1 hour after 1 hour of electrofusion increased (p < 0.05) the total cell number and decreased (p < 0.05) the levels of apoptosis and DNA methylation compared with controls. It also increased (p < 0.05) the ratio of inner cell mass:trophectoderm cell numbers of blastocysts compared with controls to the levels observed in IVF blastocysts. However, the blastocyst rate was not affected by treatment with miR-29b mimic (29.0% ± 2.0% vs. 27.0% ± 2.0% for controls). The treatment decreased (p < 0.001) the expression of epigenetic-related genes, DNMT3A and DNMT3B, but not DNMT1, and increased (p < 0.05) that of pluripotency- (NANOG, OCT4, and SOX2) and development-related genes (FGF4 and GLUT1) in blastocysts compared with controls. Our results suggest that miR-29b mimic treatment of reconstructed embryos improves the quality, reduces the level of apoptosis and DNA methylation, and changes gene expression in SCNT blastocysts without affecting the blastocyst rate.
Keywords: IVF; apoptosis; cloning; hand-made cloning.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
