Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 25:309:108705.
doi: 10.1016/j.cbi.2019.06.018. Epub 2019 Jun 11.

Downregulation of microRNA-302b-3p relieves oxygen-glucose deprivation/re-oxygenation induced injury in murine hippocampal neurons through up-regulating Nrf2 signaling by targeting fibroblast growth factor 15/19

Affiliations

Downregulation of microRNA-302b-3p relieves oxygen-glucose deprivation/re-oxygenation induced injury in murine hippocampal neurons through up-regulating Nrf2 signaling by targeting fibroblast growth factor 15/19

Zhenni Zhang et al. Chem Biol Interact. .

Abstract

MicroRNAs have emerged as critical mediators of cerebral ischaemia/reperfusion injury. Recent studies have demonstrated that microRNA-302b-3p (miR-302b-3p) plays an important role in regulating apoptosis and oxidative stress in various cells. However, whether miR-302b-3p is involved in regulating cerebral ischaemia/reperfusion injury-induced neuronal apoptosis and oxidative stress remains unknown. In the present study, we explored the potential function and molecular mechanism of miR-302b-3p in oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced neuronal injury, using an in vitro model of cerebral ischaemia/reperfusion injury. We found that miR-302b-3p expression was up-regulated by OGD/R treatment in neurons. The inhibition of miR-302b-3p improved cell viability, and reduced apoptosis and the production of reactive oxygen species, showing a protective effect against OGD/R-induced injury. Interestingly, miR-302b-3p was shown to target and modulate murine fibroblast growth factor 15 (FGF15). Moreover, our results showed that miR-302b-3p down-regulation contributed to the promotion of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE)-mediated antioxidant signaling associated with the inactivation of glycogen synthase kinase-3β. However, the knockdown of FGF15 significantly reversed the miR-302b-3p inhibition-mediated protective effect in OGD/R-treated neurons. Overall, these results demonstrated that miR-302b-3p inhibition confers a neuroprotective effect in OGD/R-treated neurons by up-regulating Nrf2/ARE antioxidant signaling via targeting FGF15, providing a novel target for neuroprotection in cerebral ischaemia/reperfusion injury.

Keywords: Cerebral ischaemia/reperfusion injury; FGF15; GSK-3β; Nrf2.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources