Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 26;11(25):22761-22767.
doi: 10.1021/acsami.9b05925. Epub 2019 Jun 15.

Microfluidic Fabrication of Bubble-Propelled Micromotors for Wastewater Treatment

Affiliations

Microfluidic Fabrication of Bubble-Propelled Micromotors for Wastewater Treatment

Meng Ren et al. ACS Appl Mater Interfaces. .

Abstract

Bubble-propelled micromotors with controllable shapes and sizes have been developed by a microfluidic method, which serves for effective wastewater treatment. Using the emulsion from microfluidics as the template, monodisperse micromotors can be fabricated in large quantities based on phase separation and UV-induced monomer polymerization. By adjusting the volume ratio of the two immiscible oils (ethoxylated trimethylolpropane triacrylate/paraffin oil) in the initial emulsion, the geometry of the resulting micromotor can be precisely controlled from nearly spherical, hemispherical to crescent-shaped. The size of the micromotor can be manipulated by varying the fluid flow parameters. In addition, by incorporating functional nanoparticles into the asymmetric structure, the micromotor can be functionalized flexibly for water remediation. In this research, Fe3O4 and MnO2 nanoparticles were successfully loaded on Janus micromotors. Fe3O4 nanoparticles can act as catalysts for pollutant degradation and also control the movement direction of micromotors. MnO2 nanoparticles on the concave of the micromotor catalyzed H2O2 to produce bubble propulsion motion in solution, which further enhanced the degradation of pollutants. Consequently, the obtained micromotor demonstrated effective degradation of methylene blue and can be easily recovered by magnets. Furthermore, this simple and flexible strategy offers a synthetic way for anisotropic Janus particles, which will broaden their potential application.

Keywords: bubble-propelled micromotor; controllable synthesis; microfluidic; phase separation; water treatment.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources