Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles
- PMID: 3120599
- DOI: 10.1152/ajprenal.1987.253.5.F795
Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles
Abstract
Experiments with basolateral membrane vesicles prepared from rat kidney cortex were performed to study the mechanism by which p-aminohippuric acid (PAH) is taken up across the contraluminal membrane and is concentrated in proximal tubule cells. An inward Na+ gradient failed to stimulate [3H]PAH uptake compared with K+ or Li+ and did not cause intravesicular PAH accumulation above equilibrium distribution. In the absence of Na+, the dicarboxylates glutarate and suberate cis-inhibited and trans-stimulated [3H]PAH uptake, indicating a common transport system. In the presence of Na+, 10 microM glutarate in the incubation medium did not cis-inhibit, but rather stimulated [3H]PAH uptake and caused PAH accumulation above equilibrium distribution ("overshoot"). Li+ diminished this stimulation, but was without effect on [3H]PAH/PAH- and [3H]PAH/glutarate exchange. The data indicate the coexistence of a Na+ -coupled, Li+-sensitive transport system for dicarboxylates and a Li+ -insensitive PAH/dicarboxylate exchanger in the basolateral membrane. We propose that dicarboxylates are cotransported with Na+ into the cell and subsequently exchange for extracellular PAH at the basolateral membrane. PAH uptake is thereby indirectly coupled to Na+ via the Na+/dicarboxylate cotransporter.
Similar articles
-
Renal transport mechanisms for xenobiotics: chemicals and drugs.Clin Investig. 1993 Oct;71(10):843-8. doi: 10.1007/BF00190334. Clin Investig. 1993. PMID: 8305846 Review.
-
Coupled transport of p-aminohippurate by rat kidney basolateral membrane vesicles.Am J Physiol. 1988 Oct;255(4 Pt 2):F597-604. doi: 10.1152/ajprenal.1988.255.4.F597. Am J Physiol. 1988. PMID: 3177651
-
p-Aminohippurate/2-oxoglutarate exchange in bovine renal brush-border and basolateral membrane vesicles.Pflugers Arch. 1993 May;423(3-4):280-90. doi: 10.1007/BF00374407. Pflugers Arch. 1993. PMID: 8321632
-
Urate and p-aminohippurate transport in rat renal basolateral vesicles.Am J Physiol. 1985 Nov;249(5 Pt 2):F654-61. doi: 10.1152/ajprenal.1985.249.5.F654. Am J Physiol. 1985. PMID: 4061653
-
Luminal and peritubular steps in renal transport of p-aminohippurate.Biochim Biophys Acta. 1987 Jun 24;906(2):295-308. doi: 10.1016/0304-4157(87)90015-3. Biochim Biophys Acta. 1987. PMID: 3297154 Review.
Cited by
-
Identification of sodium-dependent and sodium-independent dicarboxylate transport systems in rat liver basolateral membrane vesicles.Pflugers Arch. 1992 Jul;421(4):329-35. doi: 10.1007/BF00374220. Pflugers Arch. 1992. PMID: 1408656
-
Introduction of Organic Anion Transporters (SLC22A) and a Regulatory Mechanism by Caveolins.Electrolyte Blood Press. 2006 Mar;4(1):8-17. doi: 10.5049/EBP.2006.4.1.8. Electrolyte Blood Press. 2006. PMID: 24459480 Free PMC article. Review.
-
Modulation by anions of p-aminohippurate transport in bovine renal basolateral membrane vesicles.Pflugers Arch. 1993 Nov;425(3-4):241-7. doi: 10.1007/BF00374173. Pflugers Arch. 1993. PMID: 8309784
-
The organic anion transporter (OAT) family: a systems biology perspective.Physiol Rev. 2015 Jan;95(1):83-123. doi: 10.1152/physrev.00025.2013. Physiol Rev. 2015. PMID: 25540139 Free PMC article. Review.
-
Renal transport mechanisms for xenobiotics: chemicals and drugs.Clin Investig. 1993 Oct;71(10):843-8. doi: 10.1007/BF00190334. Clin Investig. 1993. PMID: 8305846 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources