Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Nov;253(5 Pt 2):F795-801.
doi: 10.1152/ajprenal.1987.253.5.F795.

Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles

Affiliations

Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles

H Shimada et al. Am J Physiol. 1987 Nov.

Abstract

Experiments with basolateral membrane vesicles prepared from rat kidney cortex were performed to study the mechanism by which p-aminohippuric acid (PAH) is taken up across the contraluminal membrane and is concentrated in proximal tubule cells. An inward Na+ gradient failed to stimulate [3H]PAH uptake compared with K+ or Li+ and did not cause intravesicular PAH accumulation above equilibrium distribution. In the absence of Na+, the dicarboxylates glutarate and suberate cis-inhibited and trans-stimulated [3H]PAH uptake, indicating a common transport system. In the presence of Na+, 10 microM glutarate in the incubation medium did not cis-inhibit, but rather stimulated [3H]PAH uptake and caused PAH accumulation above equilibrium distribution ("overshoot"). Li+ diminished this stimulation, but was without effect on [3H]PAH/PAH- and [3H]PAH/glutarate exchange. The data indicate the coexistence of a Na+ -coupled, Li+-sensitive transport system for dicarboxylates and a Li+ -insensitive PAH/dicarboxylate exchanger in the basolateral membrane. We propose that dicarboxylates are cotransported with Na+ into the cell and subsequently exchange for extracellular PAH at the basolateral membrane. PAH uptake is thereby indirectly coupled to Na+ via the Na+/dicarboxylate cotransporter.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources