Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep:42:8-13.
doi: 10.1016/j.fsigen.2019.05.006. Epub 2019 Jun 1.

Update on the predictability of tall stature from DNA markers in Europeans

Affiliations
Free article

Update on the predictability of tall stature from DNA markers in Europeans

Fan Liu et al. Forensic Sci Int Genet. 2019 Sep.
Free article

Abstract

Predicting adult height from DNA has important implications in forensic DNA phenotyping. In 2014, we introduced a prediction model consisting of 180 height-associated SNPs based on data from 10,361 Northwestern Europeans enriched with tall individuals (770 > 1.88 standard deviation), which yielded a mid-ranged accuracy (AUC = 0.75 for binary prediction of tall stature and R2 = 0.12 for quantitative prediction of adult height). Here, we provide an update on DNA-based height predictability considering an enlarged list of subsequently-published height-associated SNPs using data from the same set of 10,361 Europeans. A prediction model based on the full set of 689 SNPs showed an improved accuracy relative to previous models for both tall stature (AUC = 0.79) and quantitative height (R2 = 0.21). A feature selection analysis revealed a subset of 412 most informative SNPs while the corresponding prediction model retained most of the accuracy (AUC = 0.76 and R2 = 0.19) achieved with the full model. Over all, our study empirically exemplifies that the accuracy for predicting human appearance phenotypes with very complex underlying genetic architectures, such as adult height, can be improved by increasing the number of phenotype-associated DNA variants. Our work also demonstrates that a careful sub-selection allows for a considerable reduction of the number of DNA predictors that achieve similar prediction accuracy as provided by the full set. This is forensically relevant due to restrictions in the number of SNPs simultaneously analyzable with forensically suitable DNA technologies in the current days of targeted massively parallel sequencing in forensic genetics.

Keywords: Body height; DNA prediction; Forensic DNA phenotyping; Tall stature.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources