Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Dec 18;916(3):512-23.
doi: 10.1016/0167-4838(87)90198-1.

Chemical modification of cytochrome P-450 LM4. Identification of functionally linked tyrosine residues

Affiliations

Chemical modification of cytochrome P-450 LM4. Identification of functionally linked tyrosine residues

G R Jänig et al. Biochim Biophys Acta. .

Abstract

Cytochrome P-450 LM4 (RH, reduced flavoprotein:oxygen oxidoreductase (RH-hydroxylating), EC 1.14.14.1) from rabbit liver microsomes was chemically modified with tetranitromethane. Nitration of two tyrosine residues inhibits the p-nitrophenetole O-deethylase activity of the enzyme by about 80%. Sequencing the 3-nitrotyrosine-containing peptides after HPLC tryptic peptide mapping reveals that mainly Tyr-243 and Tyr-271 are nitrated, whereas Tyr-71, Tyr-188 and Tyr-365 are modified to a lower extent. Nitration of tyrosine residues affects the complex formation with p-nitrophenetole, alpha-naphthoflavone and metyrapone as indicated by an increased affinity towards p-nitrophenetole and by a decreased affinity for the latter compounds. Furthermore, nitration interferes with the electron transfer from NADPH-cytochrome P-450-reductase to cytochrome P-450 LM4 resulting in a slowed down reduction reaction. The results suggest that Tyr-243 and Tyr-271 of cytochrome P-450 LM4 are functionally involved in the interaction with NADPH-cytochrome P-450 reductase.

PubMed Disclaimer

LinkOut - more resources