Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jun 16;11(6):1357.
doi: 10.3390/nu11061357.

Role of Diet in Chronic Obstructive Pulmonary Disease Prevention and Treatment

Affiliations
Review

Role of Diet in Chronic Obstructive Pulmonary Disease Prevention and Treatment

Egeria Scoditti et al. Nutrients. .

Abstract

Chronic obstructive pulmonary disease is one of the leading causes of morbidity and mortality worldwide and a growing healthcare problem. Identification of modifiable risk factors for prevention and treatment of COPD is urgent, and the scientific community has begun to pay close attention to diet as an integral part of COPD management, from prevention to treatment. This review summarizes the evidence from observational and clinical studies regarding the impact of nutrients and dietary patterns on lung function and COPD development, progression, and outcomes, with highlights on potential mechanisms of action. Several dietary options can be considered in terms of COPD prevention and/or progression. Although definitive data are lacking, the available scientific evidence indicates that some foods and nutrients, especially those nutraceuticals endowed with antioxidant and anti-inflammatory properties and when consumed in combinations in the form of balanced dietary patterns, are associated with better pulmonary function, less lung function decline, and reduced risk of COPD. Knowledge of dietary influences on COPD may provide health professionals with an evidence-based lifestyle approach to better counsel patients toward improved pulmonary health.

Keywords: Mediterranean diet; antioxidant; chronic obstructive pulmonary disease; dietary pattern; inflammation; lung function; nutrition; oxidative stress; polyphenol; polyunsaturated fatty acid.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The bubble map visualizes 127 keywords extracted from published papers retrieved in PubMed under the search terms “diet” and “chronic obstructive pulmonary disease risk” between 1989 and 2019. Bubble size indicates the frequency of occurrence of the words, while bubble color represents the cluster of belonging. Words are clustered based on direct citation relations; thus, each cluster corresponds to a set of closely related words. Two bubbles are in closer proximity if the two words had more frequent co-occurrence.
Figure 2
Figure 2
A framework model of the interactions of diets and dietary factors with lung function and COPD development and progression.

Similar articles

Cited by

References

    1. Adeloye D., Chua S., Lee C., Basquill C., Papana A., Theodoratou E., Nair H., Gasevic D., Sridhar D., Campbell H., et al. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J. Glob. Health. 2015;5:020415. doi: 10.7189/jogh.05.020415. - DOI - PMC - PubMed
    1. Barnes P.J., Shapiro S.D., Pauwels R.A. Chronic obstructive pulmonary disease: Molecular and cellular mechanisms. Eur. Respir. J. 2003;22:672–688. doi: 10.1183/09031936.03.00040703. - DOI - PubMed
    1. Vestbo J., Hurd S.S., Agusti A.G., Jones P.W., Vogelmeier C., Anzueto A., Barnes P.J., Fabbri L.M., Martinez F.J., Nishimura M., et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 2013;187:347–365. doi: 10.1164/rccm.201204-0596PP. - DOI - PubMed
    1. Vestbo J., Edwards L.D., Scanlon P.D., Yates J.C., Agusti A., Bakke P., Calverley P.M., Celli B., Coxson H.O., Crim C., et al. Changes in forced expiratory volume in 1 second over time in COPD. N. Engl. J. Med. 2011;365:1184–1192. doi: 10.1056/NEJMoa1105482. - DOI - PubMed
    1. Agusti A., Edwards L.D., Rennard S.I., MacNee W., Tal-Singer R., Miller B.E., Vestbo J., Lomas D.A., Calverley P.M., Wouters E., et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: A novel phenotype. PLoS ONE. 2012;7:e37483. doi: 10.1371/journal.pone.0037483. - DOI - PMC - PubMed

MeSH terms