Oxysulfide photocatalyst for visible-light-driven overall water splitting
- PMID: 31209390
- DOI: 10.1038/s41563-019-0399-z
Oxysulfide photocatalyst for visible-light-driven overall water splitting
Abstract
Oxysulfide semiconductors have narrow bandgaps suitable for water splitting under visible-light irradiation, because the electronegative sulfide ions negatively shift the valence band edges of the corresponding oxides1,2. However, the instability of sulfide ions during the water oxidation is a critical obstacle to simultaneous evolution of hydrogen and oxygen3. Here, we demonstrate the activation and stabilization of Y2Ti2O5S2, with a bandgap of 1.9 eV, as a photocatalyst for overall water splitting. On loading of IrO2 and Rh/Cr2O3 as oxygen and hydrogen evolution co-catalysts, respectively, and fine-tuning of the reaction conditions, simultaneous production of stoichiometric amounts of hydrogen and oxygen was achieved on Y2Ti2O5S2 during a 20 h reaction. The discovery of the overall water splitting capabilities of Y2Ti2O5S2 extends the range of promising materials for solar hydrogen production.
References
-
- Ishikawa, A. et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 124, 13547–13553 (2002). - DOI
-
- Ishikawa, A. et al. Oxysulfides Ln2Ti2S2O5 as stable photocatalysts for water oxidation and reduction under visible-light irradiation. J. Phys. Chem. B 108, 2637–2642 (2004). - DOI
-
- Fujito, H. et al. Layered perovskite oxychloride Bi4NbO8Cl: a stable visible light responsive photocatalyst for water splitting. J. Am. Chem. Soc. 138, 2082–2085 (2016). - DOI
-
- Shaner, M. R., Atwater, H. A., Lewis, N. S. & McFarland, E. W. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 9, 2354–2371 (2016). - DOI
-
- Bala, C. R., Breen, S., Shao, Y., Ardo, S. & Weber, A. Z. Evaluating particle-suspension reactor designs for Z-scheme solar water splitting via transport and kinetic modeling. Energy Environ. Sci. 11, 115–135 (2018). - DOI
LinkOut - more resources
Full Text Sources