Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 1;95(7):fiz089.
doi: 10.1093/femsec/fiz089.

Diversity and antimicrobial potential of Actinobacteria isolated from diverse marine sponges along the Beibu Gulf of the South China Sea

Affiliations

Diversity and antimicrobial potential of Actinobacteria isolated from diverse marine sponges along the Beibu Gulf of the South China Sea

Tan Liu et al. FEMS Microbiol Ecol. .

Abstract

Marine sponge-associated microorganisms have proven to be a very promising source of biologically active and pharmaceutically important natural products. In this study, we investigated the diversity and antibacterial potential of bacteria from 49 sponge species isolated from the Beibu Gulf, South China Sea, belonging to 16 genera and several unidentified taxa. Using a variety of selective media, 363 strains with different morphologies were identified to six bacterial taxa, including Proteobacteria (α-subgroup 85 and γ-subgroup 59), Actinobacteria (123), Firmicutes (90), Bacteroidetes (5) and Brevundimonas (1). Media ISP2 and R2A were the most effective for isolating Actinobacteria. One hundred and twenty-three actinobacterial strains clustered into 21 genera identified by 16S rDNA gene sequencing, most of which were from the genus Microbacterium, followed by Pseudonocardia, Streptomyces, Kocuria, Aeromicrobium, Brachybacterium and Nocardiopsis, constituted 82% of total actinobacterial isolates. By using the minimal medium, 92 actinobacterial isolates showed antimicrobial activities, and 51 strains displayed moderate to strong antimicrobial activity that inhibited the growth of more than half of the bacteria tested in this study. Functional genes related to secondary metabolites were screened, revealing that 10% (12/123) of actinobacterial isolates contained PKS-KS genes, 18% (22/123) harbored NRPS-A genes and 6% (7/123) had hybrid PKS-NRPS gene clusters. The sponges Haliclona sp., Callyspongia sp. and Desmacella sp., belonging to class Demonspongiae, and Leucaltis sp. from the class Calcarea, were dominant hosts, harboring the most diverse actinobacterial genera with stronger antimicrobial activities and more diverse PKS/NRPS genes.

Keywords: antibacterial activity; associated actinobacteria; diversity; functional genes; marine sponges.

PubMed Disclaimer

Similar articles

Cited by

Publication types