Biomass-Derived Production of Itaconic Acid as a Building Block in Specialty Polymers
- PMID: 31212656
- PMCID: PMC6630286
- DOI: 10.3390/polym11061035
Biomass-Derived Production of Itaconic Acid as a Building Block in Specialty Polymers
Abstract
Biomass, the only source of renewable organic carbon on Earth, offers an efficient substrate for bio-based organic acid production as an alternative to the leading petrochemical industry based on non-renewable resources. Itaconic acid (IA) is one of the most important organic acids that can be obtained from lignocellulose biomass. IA, a 5-C dicarboxylic acid, is a promising platform chemical with extensive applications; therefore, it is included in the top 12 building block chemicals by the US Department of Energy. Biotechnologically, IA production can take place through fermentation with fungi like Aspergillus terreus and Ustilago maydis strains or with metabolically engineered bacteria like Escherichia coli and Corynebacterium glutamicum. Bio-based IA represents a feasible substitute for petrochemically produced acrylic acid, paints, varnishes, biodegradable polymers, and other different organic compounds. IA and its derivatives, due to their trifunctional structure, support the synthesis of a wide range of innovative polymers through crosslinking, with applications in special hydrogels for water decontamination, targeted drug delivery (especially in cancer treatment), smart nanohydrogels in food applications, coatings, and elastomers. The present review summarizes the latest research regarding major IA production pathways, metabolic engineering procedures, and the synthesis and applications of novel polymeric materials.
Keywords: Aspergillus terreus; biosynthetic pathways; biotechnology; drug delivery; hydrogels; itaconic acid; polymers.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures
References
-
- Rodrigues N.M. Master’s Thesis. Tecnico Lisboa; Lisboa, Portugal: 2014. Exploring Saccharomyces Cerevisiae to Improve Microbe-Based Production of Itaconic Acid.
-
- Vodnar D.C., Călinoiu L.F., Dulf F.V., Ştefănescu B.E., Crişan G., Socaciu C. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chem. 2017;231:131–140. doi: 10.1016/j.foodchem.2017.03.131. - DOI - PubMed
-
- Isikgor F.H., Becer C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015;6:4497–4559. doi: 10.1039/C5PY00263J. - DOI
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
