Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Oct;44(2):187-94.

Codistribution of galactosyl- and sialyltransferase: reorganization of trans Golgi apparatus elements in hepatocytes in intact liver and cell culture

Affiliations
  • PMID: 3121331

Codistribution of galactosyl- and sialyltransferase: reorganization of trans Golgi apparatus elements in hepatocytes in intact liver and cell culture

D J Taatjes et al. Eur J Cell Biol. 1987 Oct.

Abstract

The intracellular distribution of galactosyl- and sialyltransferase was investigated in rat hepatocytes of intact liver, primary monolayer cultures of freshly isolated hepatocytes, in a nontumorigenic hepatocyte cell line and in a hepatoma cell line. The two glycosyltransferases were detected by immunofluorescence using affinity-purified rabbit antibodies. Indirect double immunofluorescence showed that both terminal glycosyltransferases were identically codistributed in the same cell. This codistribution was always observed regardless of the cell type investigated, and in both stationary and migrating cells. The immunofluorescence pattern for both galactosyl- and sialyltransferase was found to be different in hepatocytes in vivo compared to hepatocytes grown in vitro. In hepatocytes of intact liver a spot-like cytoplasmic fluorescence was observed, whereas in cultured normal hepatocytes a perinuclear fluorescence from which an extensive tubular network radiated far into the cytoplasm existed. Cultured hepatoma cells also exhibited an extensive cytoplasmic fluorescence, which in contrast to the normal hepatocytes was rather diffuse. We conclude that (a) galactosyl- and sialyltransferase are codistributed in rat hepatocytes, and (b) a reorganization of (trans) Golgi apparatus elements containing both terminal glycosyltransferases occurs under conditions of in vitro growth and malignant transformation.

PubMed Disclaimer

Similar articles

Cited by

Publication types