Type V Secretion Systems: An Overview of Passenger Domain Functions
- PMID: 31214135
- PMCID: PMC6555100
- DOI: 10.3389/fmicb.2019.01163
Type V Secretion Systems: An Overview of Passenger Domain Functions
Abstract
Bacteria secrete proteins for different purposes such as communication, virulence functions, adhesion to surfaces, nutrient acquisition, or growth inhibition of competing bacteria. For secretion of proteins, Gram-negative bacteria have evolved different secretion systems, classified as secretion systems I through IX to date. While some of these systems consist of multiple proteins building a complex spanning the cell envelope, the type V secretion system, the subject of this review, is rather minimal. Proteins of the Type V secretion system are often called autotransporters (ATs). In the simplest case, a type V secretion system consists of only one polypeptide chain with a β-barrel translocator domain in the membrane, and an extracellular passenger or effector region. Depending on the exact domain architecture of the protein, type V secretion systems can be further separated into sub-groups termed type Va through e, and possibly another recently identified subtype termed Vf. While this classification works well when it comes to the architecture of the proteins, this is not the case for the function(s) of the secreted passenger. In this review, we will give an overview of the functions of the passengers of the different AT classes, shedding more light on the variety of functions carried out by type V secretion systems.
Keywords: AT; Gram-negative microorganisms; bacterial outer membrane; secretion systems; virulence.
Figures


Similar articles
-
Identification of the Autochaperone Domain in the Type Va Secretion System (T5aSS): Prevalent Feature of Autotransporters with a β-Helical Passenger.Front Microbiol. 2018 Jan 5;8:2607. doi: 10.3389/fmicb.2017.02607. eCollection 2017. Front Microbiol. 2018. PMID: 29375499 Free PMC article.
-
BamA is required for autotransporter secretion.Biochim Biophys Acta Gen Subj. 2020 Jul;1864(7):129581. doi: 10.1016/j.bbagen.2020.129581. Epub 2020 Feb 27. Biochim Biophys Acta Gen Subj. 2020. PMID: 32114025 Free PMC article.
-
Autotransporter secretion: varying on a theme.Res Microbiol. 2013 Jul-Aug;164(6):562-82. doi: 10.1016/j.resmic.2013.03.010. Epub 2013 Apr 6. Res Microbiol. 2013. PMID: 23567321 Review.
-
Importance of conserved residues of the serine protease autotransporter beta-domain in passenger domain processing and beta-barrel assembly.Infect Immun. 2010 Aug;78(8):3516-28. doi: 10.1128/IAI.00390-10. Epub 2010 Jun 1. Infect Immun. 2010. PMID: 20515934 Free PMC article.
-
Job contenders: roles of the β-barrel assembly machinery and the translocation and assembly module in autotransporter secretion.Mol Microbiol. 2017 Nov;106(4):505-517. doi: 10.1111/mmi.13832. Epub 2017 Sep 26. Mol Microbiol. 2017. PMID: 28887826 Review.
Cited by
-
Recent Developments in the Inhibition of Bacterial Adhesion as Promising Anti-Virulence Strategy.Int J Mol Sci. 2023 Mar 2;24(5):4872. doi: 10.3390/ijms24054872. Int J Mol Sci. 2023. PMID: 36902301 Free PMC article.
-
Host-Bacterial Interactions: Outcomes of Antimicrobial Peptide Applications.Membranes (Basel). 2022 Jul 19;12(7):715. doi: 10.3390/membranes12070715. Membranes (Basel). 2022. PMID: 35877918 Free PMC article. Review.
-
Composition and Seasonality of Membrane Transporters in Marine Picoplankton.Front Microbiol. 2021 Sep 28;12:714732. doi: 10.3389/fmicb.2021.714732. eCollection 2021. Front Microbiol. 2021. PMID: 34650527 Free PMC article.
-
Secretory molecules from secretion systems fine-tune the host-beneficial bacteria (PGPRs) interaction.Front Microbiol. 2024 Feb 26;15:1355750. doi: 10.3389/fmicb.2024.1355750. eCollection 2024. Front Microbiol. 2024. PMID: 38468848 Free PMC article. Review.
-
Mechanisms of Antibiotic and Biocide Resistance That Contribute to Pseudomonas aeruginosa Persistence in the Hospital Environment.Biomedicines. 2023 Apr 19;11(4):1221. doi: 10.3390/biomedicines11041221. Biomedicines. 2023. PMID: 37189839 Free PMC article. Review.
References
-
- Alvarez B. H., Gruber M., Ursinus A., Dunin-Horkawicz S., Lupas A. N., Zeth K. (2010). A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled-coil segment of trimeric autotransporter adhesins. J. Struct. Biol. 170 236–245. 10.1016/j.jsb.2010.02.009 - DOI - PubMed
-
- Aoki S. K., Malinverni J. C., Jacoby K., Thomas B., Pamma R., Trinh B. N., et al. (2008). Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol. Microbiol. 70 323–340. 10.1111/j.1365-2958.2008.06404.x - DOI - PMC - PubMed
-
- Aoki S. K., Pamma R., Hernday A. D. (2005). Contact-dependent inhibition of growth in Escherichia coli. Science 309 1245–1249. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources