Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Jan 5;263(1):140-3.

Topographical similarities between harmaline inhibition sites on Na+-dependent amino acid transport system ASC in human erythrocytes and Na+-independent system asc in horse erythrocytes

Affiliations
  • PMID: 3121605
Free article
Comparative Study

Topographical similarities between harmaline inhibition sites on Na+-dependent amino acid transport system ASC in human erythrocytes and Na+-independent system asc in horse erythrocytes

J D Young et al. J Biol Chem. .
Free article

Abstract

Na+-dependent system ASC and Na+-independent system asc are characterized by a common selectivity for neutral amino acids of intermediate size such as L-alanine and by their interactions with dibasic amino acids. For system ASC, the positive charge on the dibasic amino acid side chain is considered to occupy the Na+-binding site on the transporter. We report here the use of harmaline (a Na+-site inhibitor in some systems) as a probe of possible structural homology between these two classes of amino acid transporter. Harmaline was found to inhibit human erythrocyte system ASC noncompetitively with respect to L-alanine concentration, but approximated competitive inhibition with respect to Na+ concentration (apparent Ki = 2.0 and 0.9 mM, respectively). Similarly, harmaline noncompetitively inhibited L-alanine uptake by horse erythrocyte systems asc1 and asc2 (apparent Ki = 2.0 and 1.9 mM, respectively). In contrast, harmaline functioned as a competitive inhibitor of L-lysine uptake by system asc1 (apparent Ki = 2.6 mM). It is concluded that harmaline competes with Na+ for binding to system ASC and that a topographically similar harmaline inhibition site is present on system asc. This site does not however bind Na+, the asc1 transporter exhibiting normal L-alanine and L-lysine influx kinetics in the total absence of extracellular cations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources