Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Jan 15;263(2):925-30.

DNA polymerase III from Saccharomyces cerevisiae. II. Inhibitor studies and comparison with DNA polymerases I and II

Affiliations
  • PMID: 3121622
Free article
Comparative Study

DNA polymerase III from Saccharomyces cerevisiae. II. Inhibitor studies and comparison with DNA polymerases I and II

P M Burgers et al. J Biol Chem. .
Free article

Abstract

The newly identified yeast DNA polymerase III was compared to DNA polymerases I and II and the mitochondrial DNA polymerase. Inhibition by aphidicolin (I50) of DNA polymerases I, II, and III was 4, 6, and 0.6 micrograms/ml, respectively. The mitochondrial enzyme was insensitive to the drug. N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate strongly inhibited DNA polymerase I (I50 = 0.3 microM), whereas DNA polymerase III was less sensitive (I50 = 80 microM). Conditions that allowed proteolysis to proceed during the preparation of extracts converted DNA polymerase II from a sensitive form (I50 = 2.4 microM) to a resistant form (I50 = 2 mM). The mitochondrial DNA polymerase is insensitive (I50 greater than 5 mM). With most other inhibitors tested (N-ethylmaleimide, heparin, salt) only small differences were observed between the three nuclear DNA polymerases. Polyclonal antibodies to DNA polymerase III did not inhibit DNA polymerases I and II, nor were those polymerases recognized by Western blotting. Monoclonal antibodies to DNA polymerase I did not crossreact with DNA polymerases II and III. The results show that DNA polymerase III is distinct from DNA polymerase I and II.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources