Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug;31(33):e1901885.
doi: 10.1002/adma.201901885. Epub 2019 Jun 20.

An Acidic-Microenvironment-Driven DNA Nanomachine Enables Specific ATP Imaging in the Extracellular Milieu of Tumor

Affiliations

An Acidic-Microenvironment-Driven DNA Nanomachine Enables Specific ATP Imaging in the Extracellular Milieu of Tumor

Zhenghan Di et al. Adv Mater. 2019 Aug.

Abstract

Extracellular ATP is an emerging target for cancer treatment because it is a key messenger for shaping the tumor microenvironment (TME) and regulating tumor progression. However, it remains a great challenge to design biochemical probes for targeted imaging of extracellular ATP in the TME. A TME-driven DNA nanomachine (Apt-LIP) that permits spatially controlled imaging of ATP in the extracellular milieu of tumors with ultrahigh signal-to-background ratio is reported. It operates in response to the mild acidity in the TME with the pH (low) insertion peptide (pHLIP) module, thus allowing the specific anchoring of the structure-switching signaling aptamer unit to the membrane of tumor cells for "off-on" fluorescence imaging of the extracellular ATP. Apt-LIP allows for acidity driven visualization of different extracellular concentrations of exogenous ATP, as well as the monitoring of endogenous ATP release from cells. Furthermore, it is demonstrated that Apt-LIP represents a promising platform for the specific imaging of the extracellular ATP in both primary and metastatic tumors. Ultimately, since diverse aptamers are obtained through in vitro selection, this design strategy can be further applied for precise detection of various extracellular targets in the TME.

Keywords: DNA nanomachines; cancer treatment; extracellular ATP; imaging; tumor microenvironment.

PubMed Disclaimer

LinkOut - more resources