Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 29;10(6):972-977.
doi: 10.1021/acsmedchemlett.9b00158. eCollection 2019 Jun 13.

Discovery of Potent and Orally Bioavailable Inverse Agonists of the Retinoic Acid Receptor-Related Orphan Receptor C2

Affiliations

Discovery of Potent and Orally Bioavailable Inverse Agonists of the Retinoic Acid Receptor-Related Orphan Receptor C2

Stefan von Berg et al. ACS Med Chem Lett. .

Abstract

The further optimization of a recently disclosed series of inverse agonists of the nuclear receptor RORC2 is described. Investigations into the left-hand side of compound 1, guided by X-ray crystal structures, led to the substitution of the 4-aryl-thiophenyl residue with the hexafluoro-2-phenyl-propan-2-ol moiety. This change resulted in to compound 28, which combined improved drug-like properties with good cell potency and a significantly lower dose, using an early dose to man prediction. Target engagement in vivo was demonstrated in the thymus of mice by a reduction in the number of double positive T cells after oral dosing.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Overlay of 1 (1.84 Å, PDB: 6ESN, carbons in cyan) and HTS hit 2 (2.1 Å, PDB: 6R7A carbons in orange) in the RORC2 LBD.
Figure 2
Figure 2
Overlay of 1 (1.84 Å, PDB: 6ESN, carbons in cyan), 14 (1.8 Å, PDB: 6R7J, carbons in green), and 22 (1.5 Å, PDB: 6R7K, carbons in pink) with key interactions to the RORC2 LBD.
Figure 3
Figure 3
Effect of compounds 28 and 29 on the number of CD4+CD8+ T cells in the thymus of mice.
Scheme 1
Scheme 1. Synthesis of Analogues 14, 16, 22, 28, and 29
Reagents and conditions: (a) HATU, i-PrNEt2, CH2Cl2 85%; HCl, 1,4-dioxane, RT or TFA, CH2Cl2, quant.; (b) for 14: MeCN, AcCl, NEt3, 89%; for 16: MeCN, MeOCOCl, i-PrNEt2, 64%; for 22: PhCH2CO2H, T3P, TEA, CH2Cl2, RT, 85%; (c) SFC, 30% i-PrOH in CO2, 120 bar: 28 (41%), 29 (41%).

Similar articles

Cited by

References

    1. Cyr P.; Bronner S. M.; Crawford J. J. Recent progress on nuclear receptor RORγ modulators. Bioorg. Med. Chem. Lett. 2016, 26, 4387–4393. 10.1016/j.bmcl.2016.08.012. - DOI - PubMed
    1. Pandya V. B.; Kumar S.; Sachchidanand; Sharma R.; Desai R. C. Combating Autoimmune Diseases With Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ or RORc) Inhibitors: Hits and Misses. J. Med. Chem. 2018, 61, 10976–10995. 10.1021/acs.jmedchem.8b00588. - DOI - PubMed
    1. Schnute M. E.; Wennerstål M.; Alley J.; Bengtsson M.; Blinn J. R.; Bolten C. W.; Braden T.; Bonn T.; Carlsson B.; Caspers N.; Chen M.; Choi C.; Collis L. P.; Crouse K.; Färnegårdh M.; Fennell K. F.; Fish S.; Flick A. C.; Goos-Nilsson A.; Gullberg H.; Harris P. K.; Heasley S. E.; Hegen M.; Hromockyj A. E.; Hu X.; Husman B.; Janosik T.; Jones P.; Kaila N.; Kallin E.; Kauppi B.; Kiefer J. R.; Knafels J.; Koehler K.; Kruger L.; Kurumbail R. G.; Kyne R. E.; Li W.; Löfstedt J.; Long S. A.; Menard C. A.; Mente S.; Messing D.; Meyers M. J.; Napierata L.; Nöteberg D.; Nuhant P.; Pelc M. J.; Prinsen M. J.; Rhönnstad P.; Backström-Rydin E.; Sandberg J.; Sandström M.; Shah F.; Sjöberg M.; Sundell A.; Taylor A. P.; Thorarensen A.; Trujillo J. I.; Trzupek J. D.; Unwalla R.; Vajdos F. F.; Weinberg R. A.; Wood D. C.; Xing L.; Zamaratski E.; Zapf C. W.; Zhao Y.; Wilhelmsson A.; Berstein G. Discovery of 3-Cyano-N-(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide: A Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor C2 Inverse Agonist. J. Med. Chem. 2018, 61, 10415–10439. 10.1021/acs.jmedchem.8b00392. - DOI - PubMed
    1. Sasaki Y.; Odan M.; Yamamoto S.; Kida S.; Ueyama A.; Shimizu M.; Haruna T.; Watanabe A.; Okuno T. Discovery of a potent orally bioavailable retinoic acid receptor-related orphan receptor-gamma-t (RORγt) inhibitor, S18–000003. Bioorg. Med. Chem. Lett. 2018, 28, 3549–3553. 10.1016/j.bmcl.2018.09.032. - DOI - PubMed
    1. Ouvry G.; Bihl F.; Bouix-Peter C.; Christin O.; Defoin-Platel C.; Deret S.; Feret C.; Froude D.; Hacini-Rachinel F.; Harris C. S.; Hervouet C.; Lafitte G.; Luzy A.-P.; Musicki B.; Orfila D.; Parnet V.; Pascau C.; Pascau J.; Pierre R.; Raffin C.; Rossio P.; Spiesse D.; Taquet N.; Thoreau E.; Vatinel R.; Vial E.; Hennequin L. F. Sulfoximines as potent RORγ inverse agonists. Bioorg. Med. Chem. Lett. 2018, 28, 1269–1273. 10.1016/j.bmcl.2018.03.041. - DOI - PubMed

LinkOut - more resources