Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 7:478:115-127.
doi: 10.1016/j.jtbi.2019.06.020. Epub 2019 Jun 20.

A model for epidemic dynamics in a community with visitor subpopulation

Affiliations

A model for epidemic dynamics in a community with visitor subpopulation

Emmanuel J Dansu et al. J Theor Biol. .

Abstract

With a five dimensional system of ordinary differential equations based on the SIR and SIS models, we consider the dynamics of epidemics in a community which consists of residents and short-stay visitors. Taking different viewpoints to consider public health policies to control the disease, we derive different basic reproduction numbers and clarify their common/different mathematical natures so as to understand their meanings in the dynamics of the epidemic. From our analyses, the short-stay visitor subpopulation could become significant in determining the fate of diseases in the community. Furthermore, our arguments demonstrate that it is necessary to choose one variant of basic reproduction number in order to formulate appropriate public health policies.

Keywords: Basic reproduction number; Epidemic dynamics; Mathematical model; Ordinary differential equations; Public health.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The scheme of the model for the epidemic dynamics of a community with short-stay visitor subpopulation.
Fig. 2
Fig. 2
Numerical examples of temporal variation of system (2). (a) (Rrr,Rvv,Rvr,Rrv)=(0.75,0.50,0.05,32.73); (b) (Rrr,Rvv,Rvr,Rrv)=(0.75,1.50,0.08,56.69). Commonly, Nr=100000.00,Nv=100.00,ρ=0.14,M=20.00,(xr(0),yr(0),yv(0))=(99990.0,10.0,0.0). Rvr:=βvrNv/ρ,Rrv:=βrvNrNv/M.
Fig. 3
Fig. 3
The dependence of the final size of susceptible resident population xr* on the initial size of infective resident population yr(0) and on βrr. (a) βrr=2.0×105,Rrr=10.0,(xr(0),yr(0),yv(0))=(Nryr0,yr0,0.0); (b) (xr(0),yr(0),yv(0))=(99990.0,10.0,0.0). The horizontal axis in (b) shows the value of Rrr which is a function of βrr as given by (4). Commonly, Nr=100000.0,Nv=100.0,ρ=0.2,M=0.5,βvr=1.6×104,βrv=1.0×105,βvv=4.0×105,Rvv=0.8,Rvr=0.08,Rrv=200.0.
Fig. 4
Fig. 4
The dependence of the final size of susceptible resident population xr* on βvv and on M. (a) βrr=2.0×105,Rrr=10.0; (b) βrr=3.0×106,Rrr=1.50; (c) βrr=1.5×106,Rrr=0.75. The horizontal axes show the values of Rvv which is a function of βvv for the upper figures with M=0.5 and that of M for the lower ones with βvv=4.0×105 as given by (5). Commonly, Nr=100000.0,Nv=100.0,ρ=0.2,βvr=1.6×104,βrv=1.0×105,Rvr=0.08,Rrv=200.0,(xr(0),yr(0),yv(0))=(99990.0,10.0,0.0).
Fig. 5
Fig. 5
Decomposition of the basic reproduction numbers R0∣r and R0∣v defined by (8) and (9).
Fig. 6
Fig. 6
Classification of the region (Rrr,Rvv) in terms of the values of R0∣r and R0∣v. (a) B<1; (b) B=1; (c) B>1. The boundary corresponds to the set of (Rrr,Rvv)=(Rrr*,Rvv*) defined in Corollary 5.1.1 with Theorem 5.1.
Fig. 7
Fig. 7
Differences in the values of R0∣r, R0∣v and R0∣c given by (8), (9) and (10) with B=2.0. (a) Rvv=0.6; (b) Rrr=0.1. The three curves intersect when they take the value of unity.
Fig. 8
Fig. 8
Numerical examples of the temporal variation of the system (2). (a) (xr(0),yr(0),yv(0))=(99990.0,10.0,0.0); (b) (xr(0),yr(0),yv(0))=(100000.0,0.0,1.0). Commonly, B=2.0,Rrr=0.4,Rvv=0.5,Rrv=16.90,Rvr=0.02,R0r=1.200,R0v=1.167,R0c=1.084.

Similar articles

Cited by

  • Smart investment of virus RNA testing resources to enhance Covid-19 mitigation.
    Gorji H, Arnoldini M, Jenny DF, Hardt WD, Jenny P. Gorji H, et al. PLoS One. 2021 Nov 30;16(11):e0259018. doi: 10.1371/journal.pone.0259018. eCollection 2021. PLoS One. 2021. PMID: 34847176 Free PMC article.
  • What Influence Could the Acceptance of Visitors Cause on the Epidemic Dynamics of a Reinfectious Disease?: A Mathematical Model.
    Xie Y, Ahmad I, Ikpe TIS, Sofia EF, Seno H. Xie Y, et al. Acta Biotheor. 2024 Feb 25;72(1):3. doi: 10.1007/s10441-024-09478-w. Acta Biotheor. 2024. PMID: 38402514 Free PMC article.
  • Effects of Community Connectivity on the Spreading Process of Epidemics.
    Gao Z, Gu Z, Yang L. Gao Z, et al. Entropy (Basel). 2023 May 26;25(6):849. doi: 10.3390/e25060849. Entropy (Basel). 2023. PMID: 37372193 Free PMC article.
  • The urgent need for integrated science to fight COVID-19 pandemic and beyond.
    Moradian N, Ochs HD, Sedikies C, Hamblin MR, Camargo CA Jr, Martinez JA, Biamonte JD, Abdollahi M, Torres PJ, Nieto JJ, Ogino S, Seymour JF, Abraham A, Cauda V, Gupta S, Ramakrishna S, Sellke FW, Sorooshian A, Wallace Hayes A, Martinez-Urbistondo M, Gupta M, Azadbakht L, Esmaillzadeh A, Kelishadi R, Esteghamati A, Emam-Djomeh Z, Majdzadeh R, Palit P, Badali H, Rao I, Saboury AA, Jagan Mohan Rao L, Ahmadieh H, Montazeri A, Fadini GP, Pauly D, Thomas S, Moosavi-Movahed AA, Aghamohammadi A, Behmanesh M, Rahimi-Movaghar V, Ghavami S, Mehran R, Uddin LQ, Von Herrath M, Mobasher B, Rezaei N. Moradian N, et al. J Transl Med. 2020 May 19;18(1):205. doi: 10.1186/s12967-020-02364-2. J Transl Med. 2020. PMID: 32430070 Free PMC article. Review.
  • Interdisciplinary Approaches to COVID-19.
    Moradian N, Moallemian M, Delavari F, Sedikides C, Camargo CA Jr, Torres PJ, Sorooshian A, Mehdiabadi SP, Nieto JJ, Bordas S, Ahmadieh H, Abdollahi M, Hamblin MR, Sellke FW, Cuzick J, Biykem B, Schreiber M, Eshrati B, Perry G, Montazeri A, Saboury AA, Kelishadi R, Sahebkar A, Moosavi-Movahed AA, Vatandoost H, Gorji-Bandpy M, Mobasher B, Rezaei N. Moradian N, et al. Adv Exp Med Biol. 2021;1318:923-936. doi: 10.1007/978-3-030-63761-3_52. Adv Exp Med Biol. 2021. PMID: 33973220

References

    1. Arino J., van den Driessche P. Disease spread in metapopulations. Fields Inst. Commun. 2006;48:1–13.
    1. Ball F., Britton T., House T., Isham V., Mollison D., Pellis L., Scalia Tomba G. Seven challenges for metapopulation models of epidemics, including households models. Epidemics. 2015;10:63–67. - PubMed
    1. Brauer F. Mathematical epidemiology: past, present, and future. Infect. Dis. Modell. 2017;2:113–127. - PMC - PubMed
    1. Brauer F., Castillo-Chavez C., Mubayi A., Towers S. Some models for epidemics of vector-transmitted diseases. Infect. Dis. Modell. 2016;1:79–87. - PMC - PubMed
    1. Chowell G., Sattenspiel L., Bansal S., Viboud C. Mathematical models to characterize early epidemic growth: a review. Phys. Life Rev. 2016;18:66–97. - PMC - PubMed

Publication types

LinkOut - more resources