Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 1;1860(8):628-639.
doi: 10.1016/j.bbabio.2019.06.012. Epub 2019 Jun 20.

Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types

Affiliations
Free article

Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types

Harry G Sherman et al. Biochim Biophys Acta Bioenerg. .
Free article

Abstract

Trans-plasma membrane electron transfer (tMPET) is a process by which reducing equivalents, either electrons or reductants like ascorbic acid, are exported to the extracellular environment by the cell. TPMET is involved in a number of physiological process and has been hypothesised to play a role in the redox regulation of cancer metabolism. Here, we use a new electrochemical assay to elucidate the 'preference' of cancer cells for different trans tPMET systems. This aids in proving a biochemical framework for the understanding of tPMET role, and for the development of novel tPMET-targeting therapeutics. We have delineated the mechanism of tPMET in 3 lung cancer cell models to show that the external electron transfer is orchestrated by ascorbate mediated shuttling via tPMET. In addition, the cells employ a different, non-shuttling-based mechanism based on direct electron transfer via Dcytb. Results from our investigations indicate that tPMETs are used differently, depending on the cell type. The data generated indicates that tPMETs may play a fundamental role in facilitation of energy reprogramming in malignant cells, whereby tPMETs are utilised to supply the necessary energy requirement when mitochondrial stress occurs. Our findings instruct a deeper understanding of tPMET systems, and show how different cancer cells may preferentially use distinguishable tPMET systems for cellular electron transfer processes.

Keywords: Anion channels; Ascorbate shuttle; Ascorbic acid; Cancer; Electrochemistry; Ferri-ireduction; GLUT transport; Lung epithelium; Trans-plasma membrane electron transport (tPMET).

PubMed Disclaimer

Publication types

LinkOut - more resources