Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 20:688:46-55.
doi: 10.1016/j.scitotenv.2019.05.438. Epub 2019 Jun 14.

Response of Cupriavidus basilensis B-8 to CuO nanoparticles enhances Cr(VI) reduction

Affiliations

Response of Cupriavidus basilensis B-8 to CuO nanoparticles enhances Cr(VI) reduction

Xu Yan et al. Sci Total Environ. .

Abstract

CuO nanoparticles (NPs) released into aqueous environments induce metal toxicity, which generally exerts negative effects on various organisms and leads to great challenge for wastewater biotreatment. In this study, a promotion effect of CuO NPs on biological process was first found. Cr(VI) reduction by Cupriavidus basilensis B-8 (hereafter B-8) was enhanced in the presence of CuO NPs. The efficiency of Cr(VI) bioreduction was much higher with B-8 and CuO NPs (approximately 100%) than with B-8 (approximately 37.6%) and CuO NPs (39.9-44.7%) alone, indicating a stimulatory effect of CuO NPs on Cr(VI) reduction by B-8. Our material analyses revealed different response mechanisms of B-8 to Cr(VI), with and without CuO NPs. The addition of CuO NPs influenced the interaction of Cr(VI) with the N-, P-, S-, and C-related functional groups of B-8. Transcriptomic analysis indicated that multiple mechanisms, including Cr(VI) uptake and reactive oxygen species detoxification, were induced by Cr(VI). Many genes involved in various metabolic processes were significantly upregulated by the addition of CuO NPs. To a certain extent, the pressure of DNA repairment by B-8 induced by Cr(VI) was also alleviated by the presence of CuO NPs. They contributed to facilitate B-8 growth and enhance Cr(VI) reduction, even with 50 mg/L Cr(VI). This study not only elaborated the mechanisms of bacterial Cr(VI) reduction when enhanced by CuO NPs, but also provided a novel perspective for wastewater biotreatment.

Keywords: Cr(VI) bioreduction; CuO nanoparticles (NPs); Cupriavidus basilensis B-8; Synergy effect; Transcriptomic.

PubMed Disclaimer

LinkOut - more resources