Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Jan:286:113-43.
doi: 10.1113/jphysiol.1979.sp012609.

Potassium currents in frog ventricular muscle: evidence from voltage clamp currents and extracellular K accumulation

Potassium currents in frog ventricular muscle: evidence from voltage clamp currents and extracellular K accumulation

L Cleemann et al. J Physiol. 1979 Jan.

Abstract

1. The single sucrose voltage clamp technique was used to control the membrane potential of strips of frog ventricular muscle and to measure the membrane current. The extracellular K accumulation was estimated from the after-potential observed after the release of the voltage clamp. 2. Comparing the time course of the membrane current to the time course of the development of the after-potential at different membrane potentials, it was found that all slow current changes are related to changes in the K current across the membrane. 3. Based on measurements of membrane current and the after-potential, the total membrane current was separated into two fractions: (a) the K current which gives rise to K accumulation and (b) the residual membrane current which is unrelated to K accumulation. The current-voltage relation for the residual membrane current is linear or slightly inwardly-rectifying. Residual current is zero at the resting potential and increases to about 1 microamperemeter/cm2 at -20 mV. 4. The measured membrane currents and after-potentials indicate qualitative differences between the K currents which dominate below and above -20 mV. More negative to -20 mV the after-potential develops rapidly while at potentials positive to -20 mV the after-potential develops with some delay. 5. The current dominating below -20 mV is inwardly-rectifying. The current-voltage relation has a maximum (about 2 microamperemeter/cm2) and a region with marked negative slope conductance. The outward current in the region of negative slope conductance is increased with increasing [K]o. 6. A model for the inwardly rectifying K current is described. The model accurately reproduces the shape of the measured current-voltage relations and their modification by alterations in the extracellular K concentration. The model is also compatible with the observation that all slow current changes below -20 mV are directly related to K accumulation. 7. The K current which dominates at potentials positive to -20 mV is activated by a potential and time dependent process which is unrelated to extracellular K accumulation. 8. Q10 for the magnitude of the inwardly rectifying K current is about 1.35 while the Q10 for the rate of increase of the time dependent K current is about 3--4. 9. Cs blocks the inwardly recitfying K current but has little effect on the time dependent K current. 10. The changes in the action potential duration caused by increasing the extracellular K concentration or addition of Cs to the perfusate can be explained by the effect of K and Cs on the inwardly rectifying K current.

PubMed Disclaimer

References

    1. J Physiol. 1956 Apr 27;132(1):157-63 - PubMed
    1. J Physiol. 1964 Dec;175:134-59 - PubMed
    1. J Physiol. 1963 Apr;166:225-40 - PubMed
    1. J Physiol. 1955 Apr 28;128(1):61-88 - PubMed
    1. J Physiol. 1978 Jul;280:537-58 - PubMed

Publication types

LinkOut - more resources