Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jun 22;20(12):3056.
doi: 10.3390/ijms20123056.

The Potential of Flavonoids for the Treatment of Neurodegenerative Diseases

Affiliations
Review

The Potential of Flavonoids for the Treatment of Neurodegenerative Diseases

Pamela Maher. Int J Mol Sci. .

Abstract

Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), currently affect more than 6 million people in the United States. Unfortunately, there are no treatments that slow or prevent disease development and progression. Regardless of the underlying cause of the disorder, age is the strongest risk factor for developing these maladies, suggesting that changes that occur in the aging brain put it at increased risk for neurodegenerative disease development. Moreover, since there are a number of different changes that occur in the aging brain, it is unlikely that targeting a single change is going to be effective for disease treatment. Thus, compounds that have multiple biological activities that can impact the various age-associated changes in the brain that contribute to neurodegenerative disease development and progression are needed. The plant-derived flavonoids have a wide range of activities that could make them particularly effective for blocking the age-associated toxicity pathways associated with neurodegenerative diseases. In this review, the evidence for beneficial effects of multiple flavonoids in models of AD, PD, HD, and ALS is presented and common mechanisms of action are identified. Overall, the preclinical data strongly support further investigation of specific flavonoids for the treatment of neurodegenerative diseases.

Keywords: cell death; cognitive dysfunction; inflammation; neurodegenerative disease; oxidative stress; protein aggregation; synapse loss.

PubMed Disclaimer

Conflict of interest statement

The author declares no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Structures of Representative Flavonoids from the Six Classes.
Figure 2
Figure 2
Flavonoids alter multiple pathways implicated in brain aging and neurodegenerative diseases. As discussed in this review, flavonoids can increase brain cell function and neuronal survival by reducing oxidative stress, activating neurotrophic factor signaling pathways, preventing alterations in protein processing, reducing synaptic dysfunction, and inhibiting inflammatory responses. Flavonoids can also enhance cognitive function and modulate behavioral impairments. Therefore, they have the potential to act as multi-factorial therapeutics for reducing the impact of neurodegenerative diseases.

References

    1. Przedborski S., Vila M., Jackson-Lewis V. Neurodegeneration: What is it and where are we? J. Clin. Investig. 2003;111:3–10. doi: 10.1172/JCI200317522. - DOI - PMC - PubMed
    1. Young J.J., Lavakumar M., Tampi D., Balachandran S., Tampi R.R. Frontotemporal dementia: Latest evidence and clinical implications. Ther. Adv. Psychopharmacol. 2018;8:33–48. doi: 10.1177/2045125317739818. - DOI - PMC - PubMed
    1. [(accessed on 21 June 2019)]; Available online: https://www.alz.org/alzheimers-dementia/facts-figures.
    1. [(accessed on 21 June 2019)]; Available online: https://parkinson.org/Understanding-Parkinsons/Statistics.
    1. [(accessed on 21 June 2019)]; Available online: https://rarediseases.org/rare-diseases/huntingtons-disease.