Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 24;18(1):214.
doi: 10.1186/s12936-019-2850-7.

Evaluating 18s-rRNA LAMP and selective whole genome amplification (sWGA) assay in detecting asymptomatic Plasmodium falciparum infections in blood donors

Affiliations

Evaluating 18s-rRNA LAMP and selective whole genome amplification (sWGA) assay in detecting asymptomatic Plasmodium falciparum infections in blood donors

Enoch Aninagyei et al. Malar J. .

Abstract

Background: Undesirable consequences of donor Plasmodium falciparum parasitaemia on stored donor blood have been reported. Therefore, it is imperative that all prospective blood donors are screened for P. falciparum infections using sensitive techniques. In this study, the sensitivities of microscopy, rapid diagnostic test (RDT), loop-mediated isothermal amplification (LAMP) assay and selective whole genome amplification (sWGA) technique in detecting P. falciparum infections in blood donors was assessed.

Methods: Randomly selected blood donors from 5 districts in Greater Accra Region of Ghana were screened for asymptomatic P. falciparum infections. Each donor sample was screened with SD Bioline RDT kit for P. falciparum histidine rich protein 2 and Plasmodium lactate dehydrogenase antigens, sWGA and 18s-rRNA LAMP. Crude DNA LAMP (crDNA-LAMP) was compared to purified DNA LAMP (pDNA-LAMP).

Results: A total of 771 blood donors were screened. The respective overall prevalence of P. falciparum in Ghana by microscopy, RDT, crDNA-LAMP, pDNA-LAMP and sWGA was 7.4%, 11.8%, 16.9%, 17.5% and 18.0%. Using sWGA as the reference test, the sensitivities of microscopy, RDT, crDNA-LAMP and pDNA-LAMP were 41.0% (95% CI 32.7-49.7), 65.5% (95% CI 56.9-73.3), 82.6% (95% CI 75.8-88.3) and 95.7% (95% CI 90.1-98.4), respectively. There was near perfect agreement between LAMP and sWGA (sWGA vs. crDNA-LAMP, κ = 0.87; sWGA vs. pDNA-LAMP, κ = 0.96), while crDNA-LAMP and pDNA-LAMP agreed perfectly (κ = 0.91). Goodness of fit test indicated non-significant difference between the performance of LAMP and sWGA (crDNA-LAMP vs. sWGA: x2 = 0.71, p = 0.399 and pDNA-LAMP vs. sWGA: x2 = 0.14, p = 0.707). Finally, compared to sWGA, the performance of LAMP did not differ in detecting sub-microscopic parasitaemia (sWGA vs. crDNA-LAMP: x2 = 1.12, p = 0.290 and sWGA vs. pDNA-LAMP: x2 = 0.22, p = 0.638).

Conclusions: LAMP assay agreed near perfectly with sWGA with non-significant differences in their ability to detect asymptomatic P. falciparum parasitaemia in blood donors. Therefore, it is recommended that LAMP based assays are employed to detect P. falciparum infections in blood donors due to its high sensitivity, simplicity, cost-effectiveness and user-friendliness.

Keywords: 18s-rRNA-LAMP; Crude DNA LAMP; Crude DNA extraction; Diagnostic indices; P. falciparum histidine rich protein 2; Plasmodium lactate dehydrogenase; Purified DNA LAMP; Selective whole genome amplification.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Similar articles

Cited by

References

    1. Tiedje KE, Oduro AR, Agongo G, Anyorigiya T, Azongo D, Awine T, et al. Seasonal variation in the epidemiology of asymptomatic Plasmodium falciparum infections across two catchment areas in Bongo District, Ghana. Am J Trop Med Hyg. 2017;97:199–212. doi: 10.4269/ajtmh.16-0959. - DOI - PMC - PubMed
    1. Owusu-Ofori A, Gadzo G, Bates I. Transfusion–transmitted malaria: donor prevalence of parasitaemia and a survey of healthcare workers knowledge and practices in a district hospital in Ghana. Malar J. 2016;15:234–241. doi: 10.1186/s12936-016-1289-3. - DOI - PMC - PubMed
    1. Mogtomo ML, Fomekong SL, Kuate HF, Ngane AN. Screening of infectious microorganisms in blood banks in Douala (1995–2004) Sante. 2009;19:3–8. - PubMed
    1. Diop S, Ndiaye M, Seck M, Knight B, Jambou R, Sarr A, et al. Prevention of transfusion transmitted malaria in endemic area. Transfus Clin Biol. 2009;16:454–459. doi: 10.1016/j.tracli.2009.02.004. - DOI - PubMed
    1. Kinde-Gazard, Oke J, Gnahoui I, Massougbodji A. The risk of malaria transmission by blood transfusion at Cotonou, Benin. Sante. 2000;10:389–392. - PubMed

Publication types

Substances