Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 24;16(1):25.
doi: 10.1186/s12989-019-0311-7.

Subchronic exposure to titanium dioxide nanoparticles modifies cardiac structure and performance in spontaneously hypertensive rats

Affiliations

Subchronic exposure to titanium dioxide nanoparticles modifies cardiac structure and performance in spontaneously hypertensive rats

Stefano Rossi et al. Part Fibre Toxicol. .

Abstract

Background: Non-communicable diseases, intended as the results of a combination of inherited, environmental and biological factors, kill 40 million people each year, equivalent to roughly 70% of all premature deaths globally. The possibility that manufactured nanoparticles (NPs) may affect cardiac performance, has led to recognize NPs-exposure not only as a major Public Health concern, but also as an occupational hazard. In volunteers, NPs-exposure is problematic to quantify. We recently found that inhaled titanium dioxide NPs, one of the most produced engineered nanomaterials, acutely increased cardiac excitability and promoted arrhythmogenesis in normotensive rats by a direct interaction with cardiac cells. We hypothesized that such scenario can be exacerbated by latent cardiovascular disorders such as hypertension.

Results: We monitored cardiac electromechanical performance in spontaneously hypertensive rats (SHRs) exposed to titanium dioxide NPs for 6 weeks using a combination of cardiac functional measurements associated with toxicological, immunological, physical and genetic assays. Longitudinal radio-telemetry ECG recordings and multiple-lead epicardial potential mapping revealed that atrial activation times significantly increased as well as proneness to arrhythmia. At the third week of nanoparticles administration, the lung and cardiac tissue encountered a maladaptive irreversible structural remodelling starting with increased pro-inflammatory cytokines levels and lipid peroxidation, resulting in upregulation of the main pro-fibrotic cardiac genes. At the end of the exposure, the majority of spontaneous arrhythmic events terminated, while cardiac hemodynamic deteriorated and a significant accumulation of fibrotic tissue occurred as compared to control untreated SHRs. Titanium dioxide nanoparticles were quantified in the heart tissue although without definite accumulation as revealed by particle-induced X-ray emission and ultrastructural analysis.

Conclusions: The co-morbidity of hypertension and inhaled nanoparticles induces irreversible hemodynamic impairment associated with cardiac structural damage potentially leading to heart failure. The time-dependence of exposure indicates a non-return point that needs to be taken into account in hypertensive subjects daily exposed to nanoparticles.

Keywords: Arrhythmias; Cardiac electrophysiology; Cardiac fibrosis; Nanotoxicology; Titanium dioxide nanoparticles.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study population and experimental protocol. Flowchart describing the number of animals subjected to the different experimental procedures before and after intra-tracheal instillation of saline solution (CTRL group) or saline solution added with TiO2, at a final concentration of 2 mg/kg (TiO2-NP group). * timepoints for oxidative stress and inflammation; § timepoints for real-time PCR analysis; # timepoints for PIXE. For more details see “Outline of the experimental protocols” section
Fig. 2
Fig. 2
Electrocardiographic waveform and interval durations. Basic electrophysiological parameters evaluated in CTRL (triangles) and TiO2-NPs treated (square) animals. a P wave duration (ms). b PQ segment duration (ms). c QRS complex duration (ms). d RR interval duration (ms). e QTc duration (ms). Kruskal-Wallis (post hoc analyses: Dunn’s multiple comparison) was performed and statistical significance was set at p < 0.05. * vs corresponding 1° week; # vs corresponding 3° week. Data are represented as median and interquartile range (IQR)
Fig. 3
Fig. 3
Heart rate variability indexes and arrhythmia evaluation. Heart rate variability parameters and spontaneous arrhythmic events in CTRL (triangles) and TiO2-NP (square) groups. a SDRR duration (ms). b r-MSSD duration (ms). c Sinus pauses (SP, number of events). d Atrio-ventricular blocks (AV block, number of events). Kruskal-Wallis (post hoc analyses: Dunn’s multiple comparison’s) was performed and statistical significance was set at p < 0.05. ● vs CTRL; * vs corresponding 1° week; # vs corresponding 3° week; § vs corresponding 6° week. Data are represented as median and IQR
Fig. 4
Fig. 4
Cardiac refractoriness, excitability, anisotropic conduction velocities and arrhythmia induction. Electrophysiological parameters and the index of arrhythmia inducibility in CTRL (triangles) and TiO2-NPs treated (squares) animals. a Effective refractory period (ERP, ms). b Rheobase (μA). c Chronaxie (ms). d Threshold intensity for a 1 ms duration impulse (μA). e ventricular conduction velocities along fiber (CVl, m/s). f ventricular conduction velocities across fiber (CVt, m/s). g ventricular conduction velocities ratio (CVl/CVt). Kruskal-Wallis (post hoc analyses: Dunn’s multiple comparison) was performed and statistical significance was set at p < 0.05. ● vs CTRL; * vs corresponding 1° week; # vs corresponding 3° week; § vs corresponding 6° week. Data are represented as median and interquartile range (IQR)
Fig. 5
Fig. 5
Cardiac tissue fibrosis evaluation. Masson’s trichrome staining sections were analyzed by optical microscopy to evaluate perivascular and interstitial fibrosis in the LV myocardium (greenish). Representative images of heart sections from control (a and b) and TiO2-NP treated animals (c and d). a CTRL LV myocardium; black rectangle area is shown at higher magnification in panel (b). c TiO2-NPs treated LV myocardium; black rectangle area is shown at higher magnification in panel (d). Scale bars: a and c = 200 μm; b and d = 100 μm
Fig. 6
Fig. 6
Ultrastructural features of the alveolar lung parenchyma from a representative untreated CTRL and TiO2-NPs treated SHR. a a type I pneumocyte (PI) and three capillaries (*) are present in the alveolar septum separating air spaces (As) in CTRL lung. b several TiO2-NPs are present in the cytoplasm of a large alveolar macrophage showing, in addition to vacuoles and microvescicles, onionskin-like multimembrane ultrastructures suggestive of autophagy. The area inscribed by white rectangle is shown at higher magnification in the inset. c an aggregate of electrondense TiO2-NPs is located nearby an endothelial cell lining the lumen of a capillary recognizable by the red blood cell (RBC). The white rectangle inscribes an area shown at higher magnification in d to document that TiO2-NPs are not yet internalized. e internalization of TiO2-NPs in a capillary endothelial cell that is better appreciable at higher magnification in (f). Scale Bars: a 5 μm, b, c, e: 2 μm, d, f: 500 nm
Fig. 7
Fig. 7
TEM analysis of the heart from a representative untreated CTRL and TiO2-NP treated SHR. a low magnification image of a CTRL heart to illustrate the sarcolemma (arrowheads) lining the surface and gap junctions (arrows) delimiting cardiomyocytes filled of mitochondria and myofibrils. On the left, collagen bundles (Col) are present in the interstitial space between an endothelial cell (Ec) lining a capillary lumen (L) and cardiomyocytes. N: cardiomyocyte nucleus. b aggregates of TiO2-NPs within the cardiomyocyte cytoplasm showing effaced myofibrils and swollen mitochondria. c the white rectangle inscribes an area shown at higher magnification in (d) in which the arrowhead points to NP located in the interstitial space between the vessel wall inscribing a lumen (L) and cardiomyocytes (CM). e low magnification image of a treated SHR myocardium to illustrate widening of the interstitial space by abundant fibrotic deposition (Col) surrounding cardiomyocytes (CM) and an endothelial cell (Ec) lining a capillary. Arrowheads point to gap junctions delimiting two CMs. The white rectangle inscribes an area shown at higher magnification in f to document the internalization of TiO2-NP located in proximity of the CM sarcolemma bordered by collagen bundles (Col). Scale Bars: A, C, E: 5 μm, B: 2 μm, D: 1 μm, F: 500 nm
Fig. 8
Fig. 8
Inflammation and toxicological markers in the heart tissue. Lipid peroxidation products and different inflammatory and toxicological markers evaluated in CTRL (white bars) and TiO2-NPs treated (black bars) animals. a TBARS evaluation in the heart tissue. b IL-6 evaluation in the heart tissue r. c MCP-1 evaluation in the heart tissue. d TIMP-1 evaluation in the heart tissue. Two-way ANOVA (post hoc analyses: Bonferroni test) was performed and statistical significance was set at p < 0.05. ● vs CTRL; * vs corresponding 1° week; # vs corresponding 3° week. Data are represented as mean ± SEM
Fig. 9
Fig. 9
Molecular analysis displaying different gene expression linked to fibrosis deposition. Graph of different gene expression in CRTL (triangles) and TiO2-NPs treated (square) animals. a ACTA2 gene expression; b COL1A2 gene expression; c COL3A1 gene expression; d COL4A1 gene expression; e TGF-β1 gene expression; f CTGF gene expression. Kruskal-Wallis (post hoc analyses: Dunn’s multiple comparison) was performed and statistical significance was set at p < 0.05. ● vs CTRL; * vs corresponding 1° week; # vs corresponding 3° week. Data are represented as median and IQR

References

    1. Harries AD, Kumar AM, Satyanarayana S, Lin Y, Takarinda KC, Tweya H, et al. Communicable and non-communicable diseases: connections, synergies and benefits of integrating care. Public Health Action. 2015;5(3):156–157. doi: 10.5588/pha.15.0030. - DOI - PMC - PubMed
    1. Sager TM, Kommineni C, Castranova V. Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Part Fibre Toxicol. 2008;5:17. doi: 10.1186/1743-8977-5-17. - DOI - PMC - PubMed
    1. Grassian VH, O'Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect. 2007;115(3):397–402. doi: 10.1289/ehp.9469. - DOI - PMC - PubMed
    1. Miragoli Michele, Ceriotti Paola, Iafisco Michele, Vacchiano Marco, Salvarani Nicolò, Alogna Alessio, Carullo Pierluigi, Ramirez-Rodríguez Gloria Belén, Patrício Tatiana, Esposti Lorenzo Degli, Rossi Francesca, Ravanetti Francesca, Pinelli Silvana, Alinovi Rossella, Erreni Marco, Rossi Stefano, Condorelli Gianluigi, Post Heiner, Tampieri Anna, Catalucci Daniele. Inhalation of peptide-loaded nanoparticles improves heart failure. Science Translational Medicine. 2018;10(424):eaan6205. doi: 10.1126/scitranslmed.aan6205. - DOI - PubMed
    1. Paulin Laura, Hansel Nadia. Particulate air pollution and impaired lung function. F1000Research. 2016;5:201. doi: 10.12688/f1000research.7108.1. - DOI - PMC - PubMed

Publication types