Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 5:379:120750.
doi: 10.1016/j.jhazmat.2019.120750. Epub 2019 Jun 7.

Moderate-temperature catalytic incineration of cooking oil fumes using hydrophobic honeycomb supported Pt/CNT catalyst

Affiliations

Moderate-temperature catalytic incineration of cooking oil fumes using hydrophobic honeycomb supported Pt/CNT catalyst

Yu-An Ho et al. J Hazard Mater. .

Abstract

Catalytic incineration is one of the cost-effective technologies to deal with odor cooking oil fumes (COFs). Hydrophobic carbon nanotubes (CNT) supported Pt catalysts were prepared by incipient wetness impregnation method. The 2.0 wt.%Pt/CNT catalyst gave the highest activity with the lowest light-off temperature near 200 °C. The catalyst was further coated on the carbonized honeycomb which offered low-pressure drop and high surface area per unit volume. Toward feasibility application, hydrophobic honeycomb supported Pt/CNT catalyst achieved an excellent catalytic performance with the conversion of 88.0-91.3 % in gas hourly space velocity (GHSV) ranging from 5,700 to 17,200 h-1 at 300 °C. Importantly, the honeycomb supported Pt/CNT catalyst could remove COFs substantially under simulated cooking conditions. Only a slight amount of heptane remained after catalytic incineration. In addition, the honeycomb support used much less Pt/CNT catalyst by maintaining the same performance, compared with powder catalyst. Our research outcome provides an excellent opportunity to apply the honeycomb supported Pt/CNT catalyst for moderate-temperature catalytic incineration of odor exhaust from kitchen hood.

Keywords: Carbon nanotube; Cooking oil fumes; Honeycomb; Hydrophobic; Pt catalyst.

PubMed Disclaimer

Publication types

LinkOut - more resources