Evaluating riboswitch optimality
- PMID: 31239056
- PMCID: PMC7644385
- DOI: 10.1016/bs.mie.2019.05.028
Evaluating riboswitch optimality
Abstract
Riboswitches are RNA elements that recognize diverse chemical and biomolecular inputs, and transduce this recognition process to genetic, fluorescent, and other engineered outputs using RNA conformational changes. These systems are pervasive in cellular biology and are a promising biotechnology with applications in genetic regulation and biosensing. Here, we derive a simple expression bounding the activation ratio-the proportion of RNA in the active vs. inactive states-for both ON and OFF riboswitches that operate near thermodynamic equilibrium: 1+[I]/KdI, where [I] is the input ligand concentration and KdI is the intrinsic dissociation constant of the aptamer module toward the input ligand. A survey of published studies of natural and synthetic riboswitches confirms that the vast majority of empirically measured activation ratios have remained well below this thermodynamic limit. A few natural and synthetic riboswitches achieve activation ratios close to the limit, and these molecules highlight important principles for achieving high riboswitch performance. For several applications, including "light-up" fluorescent sensors and chemically-controlled CRISPR/Cas complexes, the thermodynamic limit has not yet been achieved, suggesting that current tools are operating at suboptimal efficiencies. Future riboswitch studies will benefit from comparing observed activation ratios to this simple expression for the optimal activation ratio. We present experimental and computational suggestions for how to make these quantitative comparisons and suggest new molecular mechanisms that may allow non-equilibrium riboswitches to surpass the derived limit.
Keywords: Aptamer; Biosensor; Genetic regulation; Optimality; RNA; Riboswitch; Thermodynamic model.
© 2019 Elsevier Inc. All rights reserved.
Figures








Similar articles
-
The dynamic nature of RNA as key to understanding riboswitch mechanisms.Acc Chem Res. 2011 Dec 20;44(12):1339-48. doi: 10.1021/ar200035g. Epub 2011 Jun 16. Acc Chem Res. 2011. PMID: 21678902
-
Using reweighted pulling simulations to characterize conformational changes in riboswitches.Methods Enzymol. 2015;553:139-62. doi: 10.1016/bs.mie.2014.10.055. Epub 2015 Feb 3. Methods Enzymol. 2015. PMID: 25726464
-
Automated physics-based design of synthetic riboswitches from diverse RNA aptamers.Nucleic Acids Res. 2016 Jan 8;44(1):1-13. doi: 10.1093/nar/gkv1289. Epub 2015 Nov 30. Nucleic Acids Res. 2016. PMID: 26621913 Free PMC article.
-
Computational Methods for Modeling Aptamers and Designing Riboswitches.Int J Mol Sci. 2017 Nov 17;18(11):2442. doi: 10.3390/ijms18112442. Int J Mol Sci. 2017. PMID: 29149090 Free PMC article. Review.
-
RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.Biotechnol J. 2015 Feb;10(2):246-57. doi: 10.1002/biot.201300498. Biotechnol J. 2015. PMID: 25676052 Review.
Cited by
-
Automated Design of Diverse Stand-Alone Riboswitches.ACS Synth Biol. 2019 Aug 16;8(8):1838-1846. doi: 10.1021/acssynbio.9b00142. Epub 2019 Jul 29. ACS Synth Biol. 2019. PMID: 31298841 Free PMC article.
-
Compact RNA sensors for increasingly complex functions of multiple inputs.bioRxiv [Preprint]. 2024 Jan 16:2024.01.04.572289. doi: 10.1101/2024.01.04.572289. bioRxiv. 2024. PMID: 38260323 Free PMC article. Preprint.
-
Crowdsourced RNA design discovers diverse, reversible, efficient, self-contained molecular switches.Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2112979119. doi: 10.1073/pnas.2112979119. Epub 2022 Apr 26. Proc Natl Acad Sci U S A. 2022. PMID: 35471911 Free PMC article.
-
Engineering acyclovir-induced RNA nanodevices for reversible and tunable control of aptamer function.Cell Chem Biol. 2024 Oct 17;31(10):1827-1838.e7. doi: 10.1016/j.chembiol.2024.07.017. Epub 2024 Aug 26. Cell Chem Biol. 2024. PMID: 39191249
-
RNA secondary structure packages evaluated and improved by high-throughput experiments.Nat Methods. 2022 Oct;19(10):1234-1242. doi: 10.1038/s41592-022-01605-0. Epub 2022 Oct 3. Nat Methods. 2022. PMID: 36192461 Free PMC article.
References
-
- Berens C, & Suess B (2015). Riboswitch engineering—Making the all-important second and third steps. Current Opinion in Biotechnology, 31, 10–15. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous