Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun;570(7762):491-495.
doi: 10.1038/s41586-019-1322-0. Epub 2019 Jun 26.

Untethered flight of an insect-sized flapping-wing microscale aerial vehicle

Affiliations

Untethered flight of an insect-sized flapping-wing microscale aerial vehicle

Noah T Jafferis et al. Nature. 2019 Jun.

Abstract

Heavier-than-air flight at any scale is energetically expensive. This is greatly exacerbated at small scales and has so far presented an insurmountable obstacle for untethered flight in insect-sized (mass less than 500 milligrams and wingspan less than 5 centimetres) robots. These vehicles1-4 thus need to fly tethered to an offboard power supply and signal generator owing to the challenges associated with integrating onboard electronics within a limited payload capacity. Here we address these challenges to demonstrate sustained untethered flight of an insect-sized flapping-wing microscale aerial vehicle. The 90-milligram vehicle uses four wings driven by two alumina-reinforced piezoelectric actuators to increase aerodynamic efficiency (by up to 29 per cent relative to similar two-wing vehicles5) and achieve a peak lift-to-weight ratio of 4.1 to 1, demonstrating greater thrust per muscle mass than typical biological counterparts6. The integrated system of the vehicle together with the electronics required for untethered flight (a photovoltaic array and a signal generator) weighs 259 milligrams, with an additional payload capacity allowing for additional onboard devices. Consuming only 110-120 milliwatts of power, the system matches the thrust efficiency of similarly sized insects such as bees7. This insect-scale aerial vehicle is the lightest thus far to achieve sustained untethered flight (as opposed to impulsive jumping8 or liftoff9).

PubMed Disclaimer

Comment in

  • Flight of the RoboBee.
    Breuer K. Breuer K. Nature. 2019 Jun;570(7762):448-449. doi: 10.1038/d41586-019-01964-3. Nature. 2019. PMID: 31243380 No abstract available.

Publication types

LinkOut - more resources