Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 10;19(7):4470-4477.
doi: 10.1021/acs.nanolett.9b01282. Epub 2019 Jun 21.

Recognition, Intervention, and Monitoring of Neutrophils in Acute Ischemic Stroke

Affiliations

Recognition, Intervention, and Monitoring of Neutrophils in Acute Ischemic Stroke

Chunming Tang et al. Nano Lett. .

Abstract

Neutrophils are implicated in numerous inflammatory diseases, and especially in acute ischemic stroke (AIS). The unchecked migration of neutrophils into cerebral ischemic regions, and their subsequent release of reactive oxygen species, are considered the primary causes of reperfusion injury following AIS. Reducing the infiltration of inflammatory neutrophils may therefore be a useful therapy for AIS. Here, inspired by the specific cell-cell recognition that occurs between platelets and inflammatory neutrophils, we describe platelet-mimetic nanoparticles (PTNPs) that can be used to directly recognize, intervene, and monitor inflammatory neutrophils in the AIS treatment and therapeutic evaluation. We demonstrate that PTNPs, coloaded with piceatannol, a selective spleen tyrosine kinase inhibitor, and superparamagnetic iron oxide (SPIO), a T2 contrast agent, can successfully recognize adherent neutrophils via platelet membrane coating. The loaded piceatannol could then be delivered to adherent neutrophils and detach them into circulation, thus decreasing neutrophil infiltration and reducing infarct size. Moreover, when coupled with magnetic resonance imaging, internalized SPIO could be used to monitor the inflammatory neutrophils, associated with therapeutic effects, in real time. This approach is an innovative method for both the treatment and therapeutic evaluation of AIS, and provides new insights into how to treat and monitor neutrophil-associated diseases.

Keywords: Inflammatory neutrophil recognition; acute ischemic stroke; piceatannol; platelet-mimetic nanoparticles; superparamagnetic iron oxide.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources