Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2019 Jun 27:8:e45826.
doi: 10.7554/eLife.45826.

Response to comment on 'AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies'

Affiliations
Comment

Response to comment on 'AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies'

Christina Hertel et al. Elife. .

Abstract

In 2016, we reported four substantial observations of APECED/APS1 patients, who are deficient in AIRE, a major regulator of central T cell tolerance (Meyer et al., 2016). Two of those observations have been challenged. Specifically, 'private' autoantibody reactivities shared by only a few patients but collectively targeting >1000 autoantigens have been attributed to false positives (Landegren, 2019). While acknowledging this risk, our study-design included follow-up validation, permitting us to adopt statistical approaches to also limit false negatives. Importantly, many such private specificities have now been validated by multiple, independent means including the autoantibodies' molecular cloning and expression. Second, a significant correlation of antibody-mediated IFNα neutralization with an absence of disease in patients highly disposed to Type I diabetes has been challenged because of a claimed failure to replicate our findings (Landegren, 2019). However, flaws in design and implementation invalidate this challenge. Thus, our results present robust, insightful, independently validated depictions of APECED/APS1, that have spawned productive follow-up studies.

Keywords: APS1/APECED; autoantibodies and disease; human; human B cell biology; human biology; immunology; inflammation; medicine; type 1 diabetes.

PubMed Disclaimer

Conflict of interest statement

CH CH is an employee in ImmunoQure AG, which contributed research funding to the study by Meyer et al., 2016. DF, AL No competing interests declared, AR AR is an equity holder in ImmunoQure AG. KK KKr is an equity holder in ImmunoQure AG. PP PP is an equity holder in ImmunoQure AG. KK KKi is an equity holder in ImmunoQure AG. AH AH is an equity holder in ImmunoQure AG.

Figures

Figure 1.
Figure 1.. The comparison of two different strategies to measure IFNα neutralizing capacity of APECED/APS1 serum samples.
In panel (A), the same reporter cell assay (HEK-Blue IFN-α/β cells from InvivoGen) has been applied as in Meyer et al. (2016) but at a single high serum concentration (ns: not significant). (B) Representative fitted dose-response curves that were used in Meyer et al. (2016) to calculate IC50 values for each serum sample. Individual curves are represented with dotted lines and those for grouped values in solid lines (mean ± SEM). (C) IC50 values (expressed as the dilution of serum sufficient to neutralize 50% of IFNα2 activity [12.5 U/ml]) that were calculated from individual and grouped curves shown in panel B. APECED/APS1 patients with Type 1 diabetes (T1D) are depicted in red and APECED/APS1 patients with GAD65 autoantibodies (GADA) but without T1D are in blue. (D) Neutralization of IFNα2 activity (10 000 U/ml) required to induce pSTAT1 was tested with different dilutions of sera from GAD seropositive patients with and without T1D. 2-way ANOVA was used to calculate P-values [ns – not significant, **p≤0.01, ***p≤0.001, ****p≤0.0001].

Comment on

References

    1. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298:1395–1401. doi: 10.1126/science.1075958. - DOI - PubMed
    1. Dhir A, Dhir S, Borowski LS, Jimenez L, Teitell M, Rötig A, Crow YJ, Rice GI, Duffy D, Tamby C, Nojima T, Munnich A, Schiff M, de Almeida CR, Rehwinkel J, Dziembowski A, Szczesny RJ, Proudfoot NJ. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature. 2018;560:238–242. doi: 10.1038/s41586-018-0363-0. - DOI - PMC - PubMed
    1. Ferreira RC, Guo H, Coulson RM, Smyth DJ, Pekalski ML, Burren OS, Cutler AJ, Doecke JD, Flint S, McKinney EF, Lyons PA, Smith KG, Achenbach P, Beyerlein A, Dunger DB, Clayton DG, Wicker LS, Todd JA, Bonifacio E, Wallace C, Ziegler AG. A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes. 2014;63:2538–2550. doi: 10.2337/db13-1777. - DOI - PMC - PubMed
    1. Fishman D, Kisand K, Hertel C, Rothe M, Remm A, Pihlap M, Adler P, Vilo J, Peet A, Meloni A, Podkrajsek KT, Battelino T, Bruserud Ø, Wolff ASB, Husebye ES, Kluger N, Krohn K, Ranki A, Peterson H, Hayday A, Peterson P. Autoantibody repertoire in APECED patients targets two distinct subgroups of proteins. Frontiers in Immunology. 2017;8:976. doi: 10.3389/fimmu.2017.00976. - DOI - PMC - PubMed
    1. Foulis AK, Farquharson MA, Meager A. Immunoreactive alpha-interferon in insulin-secreting beta cells in type 1 diabetes mellitus. The Lancet. 1987;2:1423–1427. doi: 10.1016/s0140-6736(87)91128-7. - DOI - PubMed

Publication types