Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jan 28:1:57-62.
doi: 10.1016/j.reth.2014.10.002. eCollection 2015 Jun.

Signaling pathways regulating the specification and differentiation of the osteoblast lineage

Affiliations
Review

Signaling pathways regulating the specification and differentiation of the osteoblast lineage

Hironori Hojo et al. Regen Ther. .

Abstract

Tissue engineering is an approach to the regeneration of tissues that uses a combination of cell sources, signaling factors and scaffolds. Among these three components, signaling factors for bone regeneration have not yet been established, and it is necessary to better understand osteoblast progenitors as a target cells. Several lines of evidence have revealed that, during bone formation, mesenchymal cells are specified and differentiate into osteoblasts through several stages of precursors. The osteoblast lineage is defined by the expression of stage-specific transcription factors. The specification and differentiation are organized by a variety of signaling pathways including hedgehog (Hh), Wnt, Notch, bone morphogenetic protein (BMP) and transforming growth factor-beta (TGFβ). In this review we integrate the known functions of these signaling pathways and discuss future tasks to gain a better understanding of the signaling network in osteogenesis for tissue engineering.

Keywords: Osteoblast lineage; Signaling pathways; Specification and differentiation; Transcription factors.

PubMed Disclaimer

References

    1. Kronenberg H.M. Developmental regulation of the growth plate. Nature. 2003;423(6937):332–336. - PubMed
    1. Akiyama H., Chaboissier M.C., Martin J.F., Schedl A., de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16(21):2813–2828. - PMC - PubMed
    1. Bi W., Deng J.M., Zhang Z., Behringer R.R., de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22(1):85–89. - PubMed
    1. Colnot C., Lu C., Hu D., Helms J.A. Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol. 2004;269(1):55–69. - PubMed
    1. Komori T., Yagi H., Nomura S., Yamaguchi A., Sasaki K., Deguchi K. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755–764. - PubMed

LinkOut - more resources