Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jul 10;119(13):7737-7832.
doi: 10.1021/acs.chemrev.8b00630. Epub 2019 Jun 27.

Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation

Affiliations
Review

Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation

Emelie Flood et al. Chem Rev. .

Abstract

Membrane ion channels are the fundamental electrical components in the nervous system. Recent developments in X-ray crystallography and cryo-EM microscopy have revealed what these proteins look like in atomic detail but do not tell us how they function. Molecular dynamics simulations have progressed to the point that we can now simulate realistic molecular assemblies to produce quantitative calculations of the thermodynamic and kinetic quantities that control function. In this review, we summarize the state of atomistic simulation methods for ion channels to understand their conduction, activation, and drug modulation mechanisms. We are at a crossroads in atomistic simulation, where long time scale observation can provide unbiased exploration of mechanisms, supplemented by biased free energy methodologies. We illustrate the use of these approaches to describe ion conduction and selectivity in voltage-gated sodium and acid-sensing ion channels. Studies of channel gating present a significant challenge, as activation occurs on longer time scales. Enhanced sampling approaches can ensure convergence on minimum free energy pathways for activation, as illustrated here for pentameric ligand-gated ion channels that are principal to nervous system function and the actions of general anesthetics. We also examine recent studies of local anesthetic and antiepileptic drug binding to a sodium channel, revealing sites and pathways that may offer new targets for drug development. Modern simulations thus offer a range of molecular-level insights into ion channel function and modulation as a learning platform for mechanistic discovery and drug development.

PubMed Disclaimer

Publication types

LinkOut - more resources