Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 16;91(14):8789-8794.
doi: 10.1021/acs.analchem.9b00874. Epub 2019 Jun 27.

Mirror Switching for High-Resolution Ion Isolation in an Electrostatic Linear Ion Trap

Affiliations

Mirror Switching for High-Resolution Ion Isolation in an Electrostatic Linear Ion Trap

Joshua T Johnson et al. Anal Chem. .

Abstract

Ion isolation was achieved via selective pulsing of the entrance and exit ion mirrors in an electrostatic linear ion trap mass spectrometer (ELIT). Mirror switching has been described previously as a method for capturing injected ions in ELIT devices. After ion trapping, mirror switching can be used as a method for ion isolation of successively narrower ranges of mass-to-charge (m/z) ratio. By taking advantage of the spatial separation of ions in an ELIT device, pulsing of the entrance and/or exit mirrors can release unwanted ions while continuing to store ions of interest. Furthermore, mirror switching can be repeated multiple times to isolate ions of very similar m/z values with minimal loss of the stored ions, as is demonstrated by the isolation of protonated l-glutamine and l-lysine (Δ m/z = 0.0364) from a mixture of the two amino acid ions and the isobaric mixture of [PC P-18:0/22:6] and [PC 19:0/19:0] (Δ m/z = 0.0575). As isolation is accomplished due to the spatial/temporal separation of ion packets within the ELIT, multiple reflection-time-of-flight (MR-TOF) mass spectra are shown to demonstrate separation in the ELIT at the time of isolation. An isolation resolution of greater than 35 000 fwhm is demonstrated here using a 5.25 in. ELIT. This resolution corresponds to the fwhm resolution necessary to reduce contaminant overlap of an equally abundant adjacent ion to 1% or less of the isolated ion intensity.

PubMed Disclaimer

Publication types

LinkOut - more resources