Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Sep;7(3):163-175.
doi: 10.1089/big.2018.0096. Epub 2019 Jun 27.

Improving Prediction of High-Cost Health Care Users with Medical Check-Up Data

Affiliations
Review

Improving Prediction of High-Cost Health Care Users with Medical Check-Up Data

Yeonkook J Kim et al. Big Data. 2019 Sep.

Abstract

Studies found that a small portion of the population spent the majority of health care resources, and they highlighted the importance of predicting high-cost users in the health care management and policy. Most prior research on high-cost user prediction models are based on diagnosis data with additional cost and health care utilization data to improve prediction accuracy. To further improve the prediction of high-cost users, researchers have been testing various new data sources such as self-reported health status data. In this study, we use three categories of medical check-up data, laboratory tests, self-reported medical history, and self-reported health behavior data to build high-cost user prediction models, and to assess the medical check-up features as predictors of high-cost users. Using three data-mining models, logistic regression, random forest, and neural network models, we show that under the diagnosis-based approach, medical check-up data marginally improve diagnosis-based prediction models. Under the cost-based approach, we find that medical check-up data improve cost-based prediction models marginally and medical check-up data can be a viable alternate data source to diagnosis data in predicting high-cost users.

Keywords: health care cost; health insurance; high-cost users; medical check-up; predictive models.

PubMed Disclaimer

MeSH terms

LinkOut - more resources