Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep;45(9):2417-2426.
doi: 10.1016/j.ultrasmedbio.2019.05.022. Epub 2019 Jun 24.

Ultrasound-Induced Blood-Spinal Cord Barrier Opening in Rabbits

Affiliations

Ultrasound-Induced Blood-Spinal Cord Barrier Opening in Rabbits

Anne-Sophie Montero et al. Ultrasound Med Biol. 2019 Sep.

Abstract

The blood-spinal cord barrier (BSCB) considerably limits the delivery and efficacy of treatments for spinal cord diseases. The blood-brain barrier can be safely opened with low-intensity pulsed ultrasound when microbubbles are simultaneously administered intravenously. This technique was tested on the BSCB in a rabbit model in this work. Twenty-three segments of spinal cord were sonicated with a 1-MHz unfocused pulsed ultrasound device and compared with non-sonicated segments. BSCB disruption was assessed using Evan's blue dye (EBD) extravasation. Tolerance was assessed by histologic analysis. An increased EBD concentration indicating BSCB disruption was clearly observed in sonicated segments compared with controls (p = 0.004). On one animal, which received 10 sonications, repetitive BSCB disruptions revealed no evidence of cumulative toxicity. BSCB can be disrupted using an unfocused pulsed ultrasound device in combination with microbubbles without neurotoxicity even in case of repeated sonications.

Keywords: Blood–brain barrier; Blood–spinal cord barrier; Drug delivery; Spinal cord; Ultrasound.

PubMed Disclaimer

Publication types

LinkOut - more resources