The manifold structure of limb coordination in walking Drosophila
- PMID: 31250807
- PMCID: PMC6598772
- DOI: 10.7554/eLife.46409
The manifold structure of limb coordination in walking Drosophila
Erratum in
-
Correction: The manifold structure of limb coordination in walking Drosophila.Elife. 2020 Dec 4;9:e65214. doi: 10.7554/eLife.65214. Elife. 2020. PMID: 33275100 Free PMC article.
Abstract
Terrestrial locomotion requires animals to coordinate their limb movements to efficiently traverse their environment. While previous studies in hexapods have reported that limb coordination patterns can vary substantially, the structure of this variability is not yet well understood. Here, we characterized the symmetric and asymmetric components of variation in walking kinematics in the genetic model organism Drosophila. We found that Drosophila use a single continuum of coordination patterns without evidence for preferred configurations. Spontaneous symmetric variability was associated with modulation of a single control parameter-stance duration-while asymmetric variability consisted of small, limb-specific modulations along multiple dimensions of the underlying symmetric pattern. Commands that modulated walking speed, originating from artificial neural activation or from the visual system, evoked modulations consistent with spontaneous behavior. Our findings suggest that Drosophila employ a low-dimensional control architecture, which provides a framework for understanding the neural circuits that regulate hexapod legged locomotion.
Keywords: D. melanogaster; Drosophila; descending commands; gaits; hexapod; limb coordination; neuroscience; turning; walking.
© 2019, DeAngelis et al.
Conflict of interest statement
BD, JZ, DC No competing interests declared
Figures


























Similar articles
-
Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.Hum Mov Sci. 2018 Apr;58:248-259. doi: 10.1016/j.humov.2018.02.011. Epub 2018 Mar 12. Hum Mov Sci. 2018. PMID: 29505917
-
Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Nov;191(11):1037-54. doi: 10.1007/s00359-005-0029-x. Epub 2005 Nov 4. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005. PMID: 16258746
-
Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.J Neuroeng Rehabil. 2021 Feb 5;18(1):27. doi: 10.1186/s12984-021-00825-3. J Neuroeng Rehabil. 2021. PMID: 33546729 Free PMC article.
-
Universal Features in Panarthropod Inter-Limb Coordination during Forward Walking.Integr Comp Biol. 2021 Sep 8;61(2):710-722. doi: 10.1093/icb/icab097. Integr Comp Biol. 2021. PMID: 34043783 Free PMC article. Review.
-
Parallel locomotor control strategies in mice and flies.Curr Opin Neurobiol. 2022 Apr;73:102516. doi: 10.1016/j.conb.2022.01.001. Epub 2022 Feb 12. Curr Opin Neurobiol. 2022. PMID: 35158168 Free PMC article. Review.
Cited by
-
Neural mechanisms to exploit positional geometry for collision avoidance.Curr Biol. 2022 Jun 6;32(11):2357-2374.e6. doi: 10.1016/j.cub.2022.04.023. Epub 2022 May 3. Curr Biol. 2022. PMID: 35508172 Free PMC article.
-
Identifying behavioral structure from deep variational embeddings of animal motion.Commun Biol. 2022 Nov 18;5(1):1267. doi: 10.1038/s42003-022-04080-7. Commun Biol. 2022. PMID: 36400882 Free PMC article.
-
Two Brain Pathways Initiate Distinct Forward Walking Programs in Drosophila.Neuron. 2020 Nov 11;108(3):469-485.e8. doi: 10.1016/j.neuron.2020.07.032. Epub 2020 Aug 20. Neuron. 2020. PMID: 32822613 Free PMC article.
-
Fine-grained descending control of steering in walking Drosophila.bioRxiv [Preprint]. 2023 Oct 30:2023.10.15.562426. doi: 10.1101/2023.10.15.562426. bioRxiv. 2023. Update in: Cell. 2024 Oct 31;187(22):6290-6308.e27. doi: 10.1016/j.cell.2024.08.033. PMID: 37904997 Free PMC article. Updated. Preprint.
-
A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection.Elife. 2021 Oct 26;10:e66039. doi: 10.7554/eLife.66039. Elife. 2021. PMID: 34696823 Free PMC article.
References
-
- Acebrón JA, Bonilla LL, Pérez Vicente CJ, Ritort F, Spigler R. The Kuramoto model: a simple paradigm for synchronization phenomena. Reviews of Modern Physics. 2005;77:137–185. doi: 10.1103/RevModPhys.77.137. - DOI
-
- Alexander RM, Jayes AS. A dynamic similarity hypothesis for the gaits of quadrupedal mammals. Journal of Zoology. 1983;201:135–152. doi: 10.1111/j.1469-7998.1983.tb04266.x. - DOI
-
- Aminzare Z, Srivastava V, Holmes P. Gait transitions in a phase oscillator model of an insect central pattern generator. SIAM Journal on Applied Dynamical Systems. 2018;17:626–671. doi: 10.1137/17M1125571. - DOI
Publication types
MeSH terms
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases