Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 28;20(1):534.
doi: 10.1186/s12864-019-5879-7.

Construction and analysis of degradome-dependent microRNA regulatory networks in soybean

Affiliations

Construction and analysis of degradome-dependent microRNA regulatory networks in soybean

Rui Wang et al. BMC Genomics. .

Abstract

Background: Usually the microRNA (miRNA)-mediated gene regulatory network (GRN) is constructed from the investigation of miRNA expression profiling and target predictions. However, the higher/lower expression level of miRNAs does not always indicate the higher/lower level of cleavages and such analysis, thus, sometimes ignores the crucial cleavage events. In the present work, the degradome sequencing data were employed to construct the complete miRNA-mediated gene regulatory network in soybean, unlike the traditional approach starting with small RNA sequencing data.

Results: We constructed the root-, cotyledon-, leaf- and seed-specific miRNA regulatory networks with the degradome sequencing data and the forthcoming verification of miRNA profiling analysis. As a result, we identified 205 conserved miRNA-target interactions (MTIs) involved with 6 conserved gma-miRNA families and 365 tissue-specific MTIs containing 24 root-specific, 45 leaf-specific, 63 cotyledon-specific and 225 seed-specific MTIs. We found a total of 156 miRNAs in tissue-specific MTIs including 18 tissue-specific miRNAs, however, only 3 miRNAs have consistent tissue-specific expression. Our study showed the degradome-dependent miRNA regulatory networks (DDNs) in four soybean tissues and explored their conservations and specificities.

Conclusions: The construction of DDNs may provide the complete miRNA-Target interactions in certain plant tissues, leading to the identification of the conserved and tissue-specific MTIs and sub-networks. Our work provides a basis for further investigation of the roles and mechanisms of miRNA-mediated regulation of tissue-specific growth and development in soybean.

Keywords: DDN; Degradome; Regulatory network; Soybean; microRNA.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Degradome-dependent miRNA regulatory networks in soybean. The width of edges are gradient from 1 to 7, corresponding to the number of degradome libraries that verified the same MTIs. The color of edges represents the category of cleavage of highest degradome count (red is Cat_1 level, and blue is Cat_2).The grey-green circles represent targets, the grey-green squares represent target gene-encoding protein families (indicating biological function), blue circles are expression-non-changed miRNAs and orange ones are tissue-specific miRNAs
Fig. 2
Fig. 2
Venn diagram of diversity of gma-miRNA-Target relations in different tissues. The numbers in the picture show number of miRNA-Target relations’ distribution in root, leaf, cotyledon, and seed (including seed coat)
Fig. 3
Fig. 3
Comparisons of verified MTIs in different tissues. a Comparison of verified MTIs and DEM regulated MTIs in root; b Comparison of verified MTIs and DEM regulated MTIs in cotyledon; c Comparison of verified MTIs and DEM regulated MTIs in seed; d Comparison of verified MTIs and DEM regulated MTIs in leaf
Fig. 4
Fig. 4
Tissue-conserved gma-miRNA family regulatory networks. a gma-miR166 family regulatory network; b gma-miR160 family regulatory network; c gma-miR171family regulatory network; d gma-miR1510 and e gma-miR167 regulatory networks
Fig. 5
Fig. 5
gma-miR171 mediated gene regulatory networks a Cotyledon-specific DDN b Seed-specific DDN c Conserved DDN; d Degradome verified cleavage t-plot of (a) (b) (c) *DDN, Degradome-Dependent MicroRNA-mediated networks. Red verticals in (d) are degradome count of the MTIs in figure titles, which show the cleavage level of MTIs
Fig. 6
Fig. 6
Exemplified tissue-specific subnetworks. a Leaf-specific DDN mediated by cotyledon-specific miRNA5674 and miRNA1508c b Cotyledon-specific miRNA159-mediated subnetwork c Root-specifc DDN regulated by miRNA1510b-3p and miRNA2109-5p; d Seed-specific miRNA164-mediated subnetworks. *DDN, Degradome-Dependent MicroRNA-mediated networks, ‘Tissues’ described whether the MTIs are conserved or tissue-specific.
Fig. 7
Fig. 7
Interacted networks between different gma-miRNA families. a Co-interacted network of gma-miR 319 family and gma-miR4996, sub-network of Fig.3a; b Verified t-plot of gma-miR4996/Glyma.13 g219900, Y-aix represents degradome abundance(TP10M), X-aix represents nucleotide position (nt), the aligned region of microRNA on mRNA. c Verified t-plot of gma-miR319l/Glyma.13 g219900. d Verified t-plot of gma-miR319f/Glyma.13 g219900
Fig. 8
Fig. 8
The gma-miR167 family regulatory network. a Gma-miRNA167 family regulatory networks (including miR 167a/b/c/d/e/f/g/j); b Gma-miRNA167k regulatory network; c Mature gma-miRNA167 sequence variation. The bases in red are sequence variations, the grey box is homologous part of gma-miRNA167 family, and the green box is homologous part of gma-miRNA167a/b/c/d/e/f/g/j

Similar articles

Cited by

References

    1. Ku YS, Wong JW, Mui Z, Liu X, Hui JH, Chan TF, Lam HM. Small RNAs in plant responses to abiotic stresses: regulatory roles and study methods. Int J Mol Sci. 2015;16(10):24532–24554. doi: 10.3390/ijms161024532. - DOI - PMC - PubMed
    1. Gupta M, Bhaskar PB, Sriram S, Wang PH. Integration of omics approaches to understand oil/protein content during seed development in oilseed crops. Plant Cell Rep. 2017;36(5):637–652. doi: 10.1007/s00299-016-2064-1. - DOI - PubMed
    1. Cao D, Li Y, Wang J, Nan H, Wang Y, Lu S, Jiang Q, Li X, Shi D, Fang C, et al. GmmiR156b overexpression delays flowering time in soybean. Plant Mol Biol. 2015;89(4–5):353–363. doi: 10.1007/s11103-015-0371-5. - DOI - PubMed
    1. Xu S, Liu N, Mao W, Hu Q, Wang G, Gong Y. Identification of chilling-responsive microRNAs and their targets in vegetable soybean (Glycine max L.) Sci Rep. 2016;6:26619. doi: 10.1038/srep26619. - DOI - PMC - PubMed
    1. Calvino M, Messing J. Discovery of MicroRNA169 gene copies in genomes of flowering plants through positional information. Genome Biol Evol. 2013;5(2):402–417. doi: 10.1093/gbe/evt015. - DOI - PMC - PubMed