Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun;90(6):063202.
doi: 10.1063/1.5094428.

A quartz amplifier for high-sensitivity Fourier-transform ion-cyclotron-resonance measurements with trapped ions

Affiliations

A quartz amplifier for high-sensitivity Fourier-transform ion-cyclotron-resonance measurements with trapped ions

S Lohse et al. Rev Sci Instrum. 2019 Jun.

Abstract

Single-ion sensitivity is obtained in precision Penning-trap experiments devoted to light (anti)particles or ions with low mass-to-charge ratios, by adding an inductance coil to an amplifier connected to the trap, both operated at 4 K. However, single-ion sensitivity has not been reached on heavy singly or doubly charged ions. In this publication, we present a new system to reach this point, based on the use of a quartz crystal as an inductance, together with a newly developed broad-band (BB) amplifier. We detect the reduced-cyclotron frequency of 40Ca+ ions stored in a 7-tesla open-ring Penning trap. By comparing the detected electric signal obtained with the BB amplifier and the fluorescence signal obtained by collecting the photons emitted by a trapped ion cloud, we show a detection limit below 110 ions. Adding the crystal, the electrical signal increases by a factor of about 30 at room temperature, which combined with the measured equivalent resistance and voltage noise, proves the feasibility of the system to reach single-ion sensitivity at 4 K.

PubMed Disclaimer

LinkOut - more resources