Neurophysiological, nerve imaging and other techniques to assess chemotherapy-induced peripheral neurotoxicity in the clinical and research settings
- PMID: 31256000
- DOI: 10.1136/jnnp-2019-320969
Neurophysiological, nerve imaging and other techniques to assess chemotherapy-induced peripheral neurotoxicity in the clinical and research settings
Abstract
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a common dose-limiting side effect of several anticancer medications. CIPN may involve multiple areas of the peripheral nervous system from the autonomic and dorsal root ganglia (DRG) to the axon and any peripheral nerve fibre type. Large diameter sensory myelinated (Aβ) fibres are more frequently involved, but motor, small myelinated (Aδ), unmyelinated (C) or autonomic fibres may also be affected. Here, we review the current evidence on techniques for the CIPN assessment in the clinical and experimental settings. Nerve conduction studies (NCS) may be used at the subclinical and early CIPN stage, to assess the extent of large nerve fibre damage and to monitor long-term outcomes, with the sural or dorsal sural nerve as the most informative. The quantitative sensory neurological examination provides valuable data alongside NCS. Quantitative sensory testing and nerve excitability studies add information regarding pathophysiology. Nerve MRI and ultrasound may provide information on enlarged nerve, increased nerve signal intensity and DRG or spinal cord changes. Skin biopsy, corneal confocal microscopy, laser-evoked potentials, contact heat-related potentials and microneurography may reveal the extent of damage to small unmyelinated nerve fibres that go undetected by NCS. The information on the role of these latter techniques is preliminary. Hence, the use of multimodal testing is recommended as the optimal CIPN assessment strategy, employing objective NCS and other specialised techniques together with subjective patient-reported outcome measures.
Keywords: assessment; chemotherapy; nerve imaging; neurophysiology; neurotoxicity; peripheral neuropathy.
© Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.
Conflict of interest statement
Competing interests: GC serves as a consultant to PledPharma AB, Helsinn, Disarm, Rottapharm and Toray. He is a non-voting member of the board of directors of the Peripheral Nerve Society and chair of the Toxic Neuropathy Consortium. DRC is a consultant to Annexon Biosciences, argenx SE, Biotest Pharmaceuticals, Inc., Cigna Health Management, Inc., CSL Behring, DP Clinical, Inc., Grifols S.A., Hansa Medical AB, New Enterprise Associates, Inc., Octapharma AG, Pharnext SAS, Polyneuron Pharmaceuticals, Seattle Genetics Inc., Stealth BioTherapeutics and Syntimmune, Inc.; is a member of the Data Safety Monitoring Board for Pfizer, Inc., Sanofi S.A., Alnylam Pharmaceuticals, PledPharma AB and Momenta Pharma; has technology licensing agreements through Johns Hopkins University with AstraZeneca Pharmaceuticals, LP, Genentech, Inc., Levicept, Inc., Seattle Genetics, Inc., Merrimack Pharmaceuticals, Levicept Limited and Disarm Therapeutics, Inc.; is a non-voting member of the board of directors of the Peripheral Nerve Society and is editor-in-chief at Journal of the Peripheral Nervous System (until 26 June 2019). AAA, SBP, BI, ST, RV, PA, JB and DP do not have any conflicts of interest or financial disclosures to declare in relation to this manuscript.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources