Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019;139(7):999-1005.
doi: 10.1248/yakushi.18-00165-3.

[Real-time Quaking-induced Conversion Analysis of Prion-like Seeding Activity of Pathological α-Synuclein]

[Article in Japanese]
Affiliations
Free article
Review

[Real-time Quaking-induced Conversion Analysis of Prion-like Seeding Activity of Pathological α-Synuclein]

[Article in Japanese]
Kazunori Sano. Yakugaku Zasshi. 2019.
Free article

Abstract

Pathological α-synuclein (αSyn) has been shown to retain the ability to propagate as prions in humans and animals. However, the molecular basis underlying the prion-like properties of αSyn remains poorly understood. We examined whether brain tissues from cases of dementia with Lewy bodies (DLB), which contain serine 129 (Ser129)-phosphorylated insoluble aggregates of αSyn, exhibit prion-like seeding activity in vitro using the real-time quaking-induced conversion (RT-QuIC) seeding assay. Brain tissues from cases of diffuse neocortical DLB yielded a 50% seeding dose of 107.3-109.8/g brain. The RT-QuIC assay could discriminate between DLB and other neurological and neurodegenerative disorders, suggesting its potential applicability for differential diagnosis. Insoluble aggregates of αSyn>250 kDa detected only in DLB brain tissues by Western blotting analysis were specifically phosphorylated at Ser129. Therefore, we postulated that Ser129-phosphorylated insoluble aggregates of αSyn have prion-like seeding activity. However, insoluble aggregates of recombinant human αSyn (rSyn) with increased β-sheet structures showed little seeding activity in either the phosphorylated or nonphosphorylated state. In contrast, prefibrillar oligomers of rSyn showed seeding activity both with and without phosphorylation. The findings of the present study suggested that soluble oligomeric αSyn, but not the fully fibrillary form, is a seeding species in vitro.

Keywords: dementia with Lewy bodies; prion; real-time quaking-induced conversion; α-synuclein.

PubMed Disclaimer

Similar articles