Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 18;123(28):6023-6033.
doi: 10.1021/acs.jpcb.9b04529. Epub 2019 Jul 3.

Conformational Study of the Jet-Cooled Diketopiperazine Peptide Cyclo Tyrosyl-Prolyl

Affiliations

Conformational Study of the Jet-Cooled Diketopiperazine Peptide Cyclo Tyrosyl-Prolyl

Ariel Pérez-Mellor et al. J Phys Chem B. .

Abstract

The conformational landscape of the diketopiperazine (DKP) dipeptide built on tyrosine and proline, namely, cyclo Tyr-Pro, is studied by combining resonance-enhanced multiphoton ionization, double resonance infrared ultraviolet (IR-UV) spectroscopy, and quantum chemical calculations. Despite the geometrical constraints due the two aliphatic rings, DKP and proline, cyclo Tyr-Pro is a flexible molecule. For both diastereoisomers, cyclo LTyr-LPro and cyclo LTyr-DPro, two structural families coexist under supersonic jet conditions. In the most stable conformation, the aromatic tyrosine substituent is folded over the DKP ring (g+ geometry of the aromatic ring) as it is in the solid state. The other structure is completely extended (g- geometry of the aromatic ring) and resembles that proposed for the vapor phase. IR-UV results are not sufficient for unambiguous assignment of the observed spectra to either folded or extended conformations and the simulation of the vibronic pattern of the S0-S1 transition is necessary. Still, the comparison between IR-UV results and anharmonic calculations allows explanation of the minor structural differences between cyclo LTyr-LPro and cyclo LTyr-DPro in terms of different NH···π and CH···π interactions.

PubMed Disclaimer

Publication types

LinkOut - more resources